Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 63089 by mathmax by abdo last updated on 28/Jun/19

find the value of ∫_0 ^(π/2)   (dx/(1+(tanx)^(√2) )) .

$${find}\:{the}\:{value}\:{of}\:\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{2}}} \:\:\frac{{dx}}{\mathrm{1}+\left({tanx}\right)^{\sqrt{\mathrm{2}}} }\:. \\ $$

Commented by edafe ovwie last updated on 29/Jun/19

using  ∫_b ^a f(x)dx=∫_b ^a f(a+b−x)dx  let  𝛀=∫_0 ^(π/2) (1/(1+(tanx)^(√2) ))dx.....1  𝛀=∫_0 ^(π/2) (1/(1+(tan((𝛑/2)−x))^(√2) ))dx  tan((π/2)−x)=cotx=(1/(tanx))  𝛀=∫_0 ^(π/2) (1/(1+(cotx)^(√2) ))dx  𝛀=∫_0 ^(π/2) (((tanx)^(√x) )/(1+(tanx)^(√2) ))dx...2  add 1 and 2  2𝛀=∫_0 ^(π/2) 1dx  2Ω=(π/2)  Ω=(π/4)  ∫_0 ^(π/2) (1/(1+(tanx)^(√2) ))dx=(π/4)

$$\boldsymbol{{using}} \\ $$$$\int_{\boldsymbol{{b}}} ^{\boldsymbol{{a}}} \boldsymbol{{f}}\left(\boldsymbol{{x}}\right)\boldsymbol{{dx}}=\int_{\boldsymbol{{b}}} ^{\boldsymbol{{a}}} \boldsymbol{{f}}\left(\boldsymbol{{a}}+\boldsymbol{{b}}−\boldsymbol{{x}}\right)\boldsymbol{{dx}} \\ $$$${let} \\ $$$$\boldsymbol{\Omega}=\overset{\frac{\pi}{\mathrm{2}}} {\int}_{\mathrm{0}} \frac{\mathrm{1}}{\mathrm{1}+\left({tanx}\overset{\sqrt{\mathrm{2}}} {\right)}}{dx}.....\mathrm{1} \\ $$$$\boldsymbol{\Omega}=\overset{\frac{\pi}{\mathrm{2}}} {\int}_{\mathrm{0}} \frac{\mathrm{1}}{\mathrm{1}+\left({tan}\left(\frac{\boldsymbol{\pi}}{\mathrm{2}}−{x}\right)\overset{\sqrt{\mathrm{2}}} {\right)}}{dx} \\ $$$${tan}\left(\frac{\pi}{\mathrm{2}}−{x}\right)={cotx}=\frac{\mathrm{1}}{{tanx}} \\ $$$$\boldsymbol{\Omega}=\overset{\frac{\pi}{\mathrm{2}}} {\int}_{\mathrm{0}} \frac{\mathrm{1}}{\mathrm{1}+\left({cotx}\overset{\sqrt{\mathrm{2}}} {\right)}}{dx} \\ $$$$\boldsymbol{\Omega}=\overset{\frac{\pi}{\mathrm{2}}} {\int}_{\mathrm{0}} \frac{\left({tanx}\right)^{\sqrt{{x}}} }{\mathrm{1}+\left({tanx}\overset{\sqrt{\mathrm{2}}} {\right)}}{dx}...\mathrm{2} \\ $$$${add}\:\mathrm{1}\:{and}\:\mathrm{2} \\ $$$$\mathrm{2}\boldsymbol{\Omega}=\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{2}}} \mathrm{1}{dx} \\ $$$$\mathrm{2}\Omega=\frac{\pi}{\mathrm{2}} \\ $$$$\Omega=\frac{\pi}{\mathrm{4}} \\ $$$$\overset{\frac{\pi}{\mathrm{2}}} {\int}_{\mathrm{0}} \frac{\mathrm{1}}{\mathrm{1}+\left({tanx}\overset{\sqrt{\mathrm{2}}} {\right)}}{dx}=\frac{\pi}{\mathrm{4}} \\ $$

Commented by mathmax by abdo last updated on 29/Jun/19

thank you sir .

$${thank}\:{you}\:{sir}\:. \\ $$

Commented by mathmax by abdo last updated on 03/Jul/19

let A =∫_0 ^(π/2)    (dx/(1+(tanx)^(√2) ))  changement x =(π/2)−t give  A =−∫_0 ^(π/2)    ((−dt)/(1+ ((1/(tant)))^(√2) )) = ∫_0 ^(π/2)     (((tant)^(√2) )/(1+(tant)^(√2) )) dt =∫_0 ^(π/2)  ((1+(tant)^(√2) −1)/(1+(tant)^(√2) ))dt  =(π/2) −A ⇒ 2A =(π/2) ⇒ A =(π/4) .

$${let}\:{A}\:=\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{2}}} \:\:\:\frac{{dx}}{\mathrm{1}+\left({tanx}\right)^{\sqrt{\mathrm{2}}} }\:\:{changement}\:{x}\:=\frac{\pi}{\mathrm{2}}−{t}\:{give} \\ $$$${A}\:=−\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{2}}} \:\:\:\frac{−{dt}}{\mathrm{1}+\:\left(\frac{\mathrm{1}}{{tant}}\right)^{\sqrt{\mathrm{2}}} }\:=\:\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{2}}} \:\:\:\:\frac{\left({tant}\right)^{\sqrt{\mathrm{2}}} }{\mathrm{1}+\left({tant}\right)^{\sqrt{\mathrm{2}}} }\:{dt}\:=\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{2}}} \:\frac{\mathrm{1}+\left({tant}\right)^{\sqrt{\mathrm{2}}} −\mathrm{1}}{\mathrm{1}+\left({tant}\right)^{\sqrt{\mathrm{2}}} }{dt} \\ $$$$=\frac{\pi}{\mathrm{2}}\:−{A}\:\Rightarrow\:\mathrm{2}{A}\:=\frac{\pi}{\mathrm{2}}\:\Rightarrow\:{A}\:=\frac{\pi}{\mathrm{4}}\:. \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com