Question and Answers Forum

All Questions      Topic List

Algebra Questions

Previous in All Question      Next in All Question      

Previous in Algebra      Next in Algebra      

Question Number 63095 by aliesam last updated on 28/Jun/19

Answered by MJS last updated on 29/Jun/19

((4x^4 −40x^2 +100))^(1/3) −((2x^2 −10))^(1/3) =20−2x^2   x^2 =s  ((4s^2 −40s+100))^(1/3) −((2s−10))^(1/3) =20−2s  ((4(s−5)^2 ))^(1/3) −((2(s−5)))^(1/3) =10−2(s−5)  t=2(s−5) ⇔ s=(t/2)+5  (t^2 )^(1/3) −(t)^(1/3) =10−t  u=(t)^(1/3)  ⇔ t=u^3   u^2 −u=10−u^3   (u−2)(u^2 +3u+5)=0  u_1 =2 ⇒ t_1 =8 ⇒ s_1 =9 ⇒ x=±3  u_2 =−(3/2)−((√(11))/2)i ⇒ t_2 =9−2(√(11))i not valid  u_3 =−(3/2)+((√(11))/2)i ⇒ t_3 =9+2(√(11))i not valid  t_2  and t_3  do not solve (t^2 )^(1/3) −(t)^(1/3) =10−t

$$\sqrt[{\mathrm{3}}]{\mathrm{4}{x}^{\mathrm{4}} −\mathrm{40}{x}^{\mathrm{2}} +\mathrm{100}}−\sqrt[{\mathrm{3}}]{\mathrm{2}{x}^{\mathrm{2}} −\mathrm{10}}=\mathrm{20}−\mathrm{2}{x}^{\mathrm{2}} \\ $$$${x}^{\mathrm{2}} ={s} \\ $$$$\sqrt[{\mathrm{3}}]{\mathrm{4}{s}^{\mathrm{2}} −\mathrm{40}{s}+\mathrm{100}}−\sqrt[{\mathrm{3}}]{\mathrm{2}{s}−\mathrm{10}}=\mathrm{20}−\mathrm{2}{s} \\ $$$$\sqrt[{\mathrm{3}}]{\mathrm{4}\left({s}−\mathrm{5}\right)^{\mathrm{2}} }−\sqrt[{\mathrm{3}}]{\mathrm{2}\left({s}−\mathrm{5}\right)}=\mathrm{10}−\mathrm{2}\left({s}−\mathrm{5}\right) \\ $$$${t}=\mathrm{2}\left({s}−\mathrm{5}\right)\:\Leftrightarrow\:{s}=\frac{{t}}{\mathrm{2}}+\mathrm{5} \\ $$$$\sqrt[{\mathrm{3}}]{{t}^{\mathrm{2}} }−\sqrt[{\mathrm{3}}]{{t}}=\mathrm{10}−{t} \\ $$$${u}=\sqrt[{\mathrm{3}}]{{t}}\:\Leftrightarrow\:{t}={u}^{\mathrm{3}} \\ $$$${u}^{\mathrm{2}} −{u}=\mathrm{10}−{u}^{\mathrm{3}} \\ $$$$\left({u}−\mathrm{2}\right)\left({u}^{\mathrm{2}} +\mathrm{3}{u}+\mathrm{5}\right)=\mathrm{0} \\ $$$${u}_{\mathrm{1}} =\mathrm{2}\:\Rightarrow\:{t}_{\mathrm{1}} =\mathrm{8}\:\Rightarrow\:{s}_{\mathrm{1}} =\mathrm{9}\:\Rightarrow\:{x}=\pm\mathrm{3} \\ $$$${u}_{\mathrm{2}} =−\frac{\mathrm{3}}{\mathrm{2}}−\frac{\sqrt{\mathrm{11}}}{\mathrm{2}}\mathrm{i}\:\Rightarrow\:{t}_{\mathrm{2}} =\mathrm{9}−\mathrm{2}\sqrt{\mathrm{11}}\mathrm{i}\:\mathrm{not}\:\mathrm{valid} \\ $$$${u}_{\mathrm{3}} =−\frac{\mathrm{3}}{\mathrm{2}}+\frac{\sqrt{\mathrm{11}}}{\mathrm{2}}\mathrm{i}\:\Rightarrow\:{t}_{\mathrm{3}} =\mathrm{9}+\mathrm{2}\sqrt{\mathrm{11}}\mathrm{i}\:\mathrm{not}\:\mathrm{valid} \\ $$$${t}_{\mathrm{2}} \:\mathrm{and}\:{t}_{\mathrm{3}} \:\mathrm{do}\:\mathrm{not}\:\mathrm{solve}\:\sqrt[{\mathrm{3}}]{{t}^{\mathrm{2}} }−\sqrt[{\mathrm{3}}]{{t}}=\mathrm{10}−{t} \\ $$

Commented by MJS last updated on 29/Jun/19

if we write t_2  and t_3  as re^(±iθ)  and add ±2π  then re^(±i(θ+2π))  solve the equation but I doubt  if these solution are legit...

$$\mathrm{if}\:\mathrm{we}\:\mathrm{write}\:{t}_{\mathrm{2}} \:\mathrm{and}\:{t}_{\mathrm{3}} \:\mathrm{as}\:{r}\mathrm{e}^{\pm\mathrm{i}\theta} \:\mathrm{and}\:\mathrm{add}\:\pm\mathrm{2}\pi \\ $$$$\mathrm{then}\:{r}\mathrm{e}^{\pm\mathrm{i}\left(\theta+\mathrm{2}\pi\right)} \:\mathrm{solve}\:\mathrm{the}\:\mathrm{equation}\:\mathrm{but}\:\mathrm{I}\:\mathrm{doubt} \\ $$$$\mathrm{if}\:\mathrm{these}\:\mathrm{solution}\:\mathrm{are}\:\mathrm{legit}... \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com