All Questions Topic List
Algebra Questions
Previous in All Question Next in All Question
Previous in Algebra Next in Algebra
Question Number 63095 by aliesam last updated on 28/Jun/19
Answered by MJS last updated on 29/Jun/19
4x4−40x2+1003−2x2−103=20−2x2x2=s4s2−40s+1003−2s−103=20−2s4(s−5)23−2(s−5)3=10−2(s−5)t=2(s−5)⇔s=t2+5t23−t3=10−tu=t3⇔t=u3u2−u=10−u3(u−2)(u2+3u+5)=0u1=2⇒t1=8⇒s1=9⇒x=±3u2=−32−112i⇒t2=9−211inotvalidu3=−32+112i⇒t3=9+211inotvalidt2andt3donotsolvet23−t3=10−t
Commented by MJS last updated on 29/Jun/19
ifwewritet2andt3asre±iθandadd±2πthenre±i(θ+2π)solvetheequationbutIdoubtifthesesolutionarelegit...
Terms of Service
Privacy Policy
Contact: info@tinkutara.com