All Questions Topic List
Integration Questions
Previous in All Question Next in All Question
Previous in Integration Next in Integration
Question Number 63116 by mugan deni last updated on 29/Jun/19
∫1+×1+×2dx
Commented by mathmax by abdo last updated on 30/Jun/19
letusethechangementx=tanθ⇒∫1+x1+x2dx=∫1+tanθ1+tan2θ(1+tan2θ)dθ=∫1+tan2θ(1+tanθ)dθ=∫1+tanθcosθdθ=∫dθcosθ+∫sinθcos2θdθ∫sinθcos2θ=1cosθ+c1∫dθcosθ=tan(θ2)=u∫2du(1+u2)1−u21+u2=∫2du1−u2=∫(11−u+11+u)du=ln∣1+u1−u∣+c2=ln∣1+tan(θ2)1−tan(θ2)∣+c2=ln∣tan(π4+θ2)∣⇒wehave1+x2=1cos2θ⇒cos2θ=11+x2⇒cosθ=11+x2⇒∫1+x1+x2dx=1+x2+ln∣tan(π4+arctanx2)∣+Canotherway∫1+x1+x2dx=∫dx1+x2+∫xdx1+x2=ln(x+1+x2+1+x2+Candthiswayiseazy...
Answered by Hope last updated on 29/Jun/19
∫dx1+x2+∫xdx1+x2x=tanadx=sec2ada∫sec2adaseca+∫tana×sec2adaseca∫secada+∫tanasecadaln(seca+tana)+seca+cln(x+1+x2)+1+x2+c
Terms of Service
Privacy Policy
Contact: info@tinkutara.com