All Questions Topic List
Integration Questions
Previous in All Question Next in All Question
Previous in Integration Next in Integration
Question Number 63117 by mugan deni last updated on 29/Jun/19
∫cosx2+3sinx+sin2xdx
Commented by mathmax by abdo last updated on 30/Jun/19
letI=∫cosxsin2x+3sinx+2dxchangementsinx=tgivecosxdx=dt⇒I=∫dtt2+3t+2letsolvet2+3t+2=0→Δ=9−8=1⇒t1=−3+12=−1andt2=−3−12=−2⇒t2+3t+2=(t+1)(t+2)⇒I=∫dt(t+1)(t+2)=∫(1t+1−1t+2)dt=ln∣t+1∣−ln∣t+2∣+c=ln∣1+sinx∣−ln∣2+sinx∣+c.
Answered by Hope last updated on 29/Jun/19
a=sinxda=cosxdx∫daa2+3a+2∫da(a+1)(a+2)∫(a+2)−(a+1)(a+1)(a+2)da∫daa+1−∫daa+2ln(a+1)−ln(a+2)+cln(a+1a+2)+cln(1+sinx2+sinx)+c
Terms of Service
Privacy Policy
Contact: info@tinkutara.com