Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 63139 by Tawa1 last updated on 29/Jun/19

Σ_(n = 1) ^m  ((log n)/n^(3/2) )

$$\underset{\mathrm{n}\:=\:\mathrm{1}} {\overset{\mathrm{m}} {\sum}}\:\frac{\mathrm{log}\:\mathrm{n}}{\mathrm{n}^{\mathrm{3}/\mathrm{2}} } \\ $$

Commented by Tawa1 last updated on 30/Jun/19

please help with this sir   Test for convergence.     Σ_(n = 1) ^∞   (1/(n^3  sin^2 n))

$$\mathrm{please}\:\mathrm{help}\:\mathrm{with}\:\mathrm{this}\:\mathrm{sir} \\ $$$$\:\mathrm{Test}\:\mathrm{for}\:\mathrm{convergence}.\:\:\:\:\:\underset{\mathrm{n}\:=\:\mathrm{1}} {\overset{\infty} {\sum}}\:\:\frac{\mathrm{1}}{\mathrm{n}^{\mathrm{3}} \:\mathrm{sin}^{\mathrm{2}} \mathrm{n}} \\ $$

Commented by Tawa1 last updated on 30/Jun/19

God bless you sir

$$\mathrm{God}\:\mathrm{bless}\:\mathrm{you}\:\mathrm{sir} \\ $$

Commented by mathmax by abdo last updated on 30/Jun/19

if you need convergence  let S_m =Σ_(n=1) ^m  ((ln(n))/n^(3/2) )  we have lim_(n→+∞)  S_m =Σ_(n=2) ^∞   ((ln(n))/n^(3/2) )   let ϕ(x) =((ln(x))/x^(3/2) )  with x>1  we have ϕ^′ (x) =(((x^(3/2) /x)−ln(x)(3/2)x^(1/2) )/x^3 ) =(((√x)−(3/2)(√x)ln(x))/x^3 ) =((√x)/x^3 ){1−(3/2)ln(x)}  ⇒∃n_0   >0/ for x>n_0    ϕ is decreazing on]x_0  ,+∞[ so  the serie and   ∫_2 ^(+∞)  ((ln(x))/x^(3/2) ) dx have the same nature but  ∫_2 ^(+∞)   ((ln(x))/x^(3/2) )dx =_(ln(x)=t)      ∫_(ln(2)) ^(+∞)     (t/e^((3/2)t) ) e^(t ) dt = ∫_(ln(2)) ^(+∞)    t  e^((1−(3/2))t) dt  =∫_(ln(2)) ^(+∞)   te^(−(t/2))  dt     this integral converges because lim_(t→+∞)  t^2 (t e^(−(t/2)) )=0 so  Σ_(n=1) ^∞  ((ln(n))/n^(3/2) )  converges .

$${if}\:{you}\:{need}\:{convergence}\:\:{let}\:{S}_{{m}} =\sum_{{n}=\mathrm{1}} ^{{m}} \:\frac{{ln}\left({n}\right)}{{n}^{\frac{\mathrm{3}}{\mathrm{2}}} } \\ $$$${we}\:{have}\:{lim}_{{n}\rightarrow+\infty} \:{S}_{{m}} =\sum_{{n}=\mathrm{2}} ^{\infty} \:\:\frac{{ln}\left({n}\right)}{{n}^{\frac{\mathrm{3}}{\mathrm{2}}} }\:\:\:{let}\:\varphi\left({x}\right)\:=\frac{{ln}\left({x}\right)}{{x}^{\frac{\mathrm{3}}{\mathrm{2}}} }\:\:{with}\:{x}>\mathrm{1} \\ $$$${we}\:{have}\:\varphi^{'} \left({x}\right)\:=\frac{\frac{{x}^{\frac{\mathrm{3}}{\mathrm{2}}} }{{x}}−{ln}\left({x}\right)\frac{\mathrm{3}}{\mathrm{2}}{x}^{\frac{\mathrm{1}}{\mathrm{2}}} }{{x}^{\mathrm{3}} }\:=\frac{\sqrt{{x}}−\frac{\mathrm{3}}{\mathrm{2}}\sqrt{{x}}{ln}\left({x}\right)}{{x}^{\mathrm{3}} }\:=\frac{\sqrt{{x}}}{{x}^{\mathrm{3}} }\left\{\mathrm{1}−\frac{\mathrm{3}}{\mathrm{2}}{ln}\left({x}\right)\right\} \\ $$$$\left.\Rightarrow\exists{n}_{\mathrm{0}} \:\:>\mathrm{0}/\:{for}\:{x}>{n}_{\mathrm{0}} \:\:\:\varphi\:{is}\:{decreazing}\:{on}\right]{x}_{\mathrm{0}} \:,+\infty\left[\:{so}\:\:{the}\:{serie}\:{and}\:\right. \\ $$$$\int_{\mathrm{2}} ^{+\infty} \:\frac{{ln}\left({x}\right)}{{x}^{\frac{\mathrm{3}}{\mathrm{2}}} }\:{dx}\:{have}\:{the}\:{same}\:{nature}\:{but} \\ $$$$\int_{\mathrm{2}} ^{+\infty} \:\:\frac{{ln}\left({x}\right)}{{x}^{\frac{\mathrm{3}}{\mathrm{2}}} }{dx}\:=_{{ln}\left({x}\right)={t}} \:\:\:\:\:\int_{{ln}\left(\mathrm{2}\right)} ^{+\infty} \:\:\:\:\frac{{t}}{{e}^{\frac{\mathrm{3}}{\mathrm{2}}{t}} }\:{e}^{{t}\:} {dt}\:=\:\int_{{ln}\left(\mathrm{2}\right)} ^{+\infty} \:\:\:{t}\:\:{e}^{\left(\mathrm{1}−\frac{\mathrm{3}}{\mathrm{2}}\right){t}} {dt} \\ $$$$=\int_{{ln}\left(\mathrm{2}\right)} ^{+\infty} \:\:{te}^{−\frac{{t}}{\mathrm{2}}} \:{dt}\:\:\:\:\:{this}\:{integral}\:{converges}\:{because}\:{lim}_{{t}\rightarrow+\infty} \:{t}^{\mathrm{2}} \left({t}\:{e}^{−\frac{{t}}{\mathrm{2}}} \right)=\mathrm{0}\:{so} \\ $$$$\sum_{{n}=\mathrm{1}} ^{\infty} \:\frac{{ln}\left({n}\right)}{{n}^{\frac{\mathrm{3}}{\mathrm{2}}} }\:\:{converges}\:. \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com