Question and Answers Forum

All Questions      Topic List

None Questions

Previous in All Question      Next in All Question      

Previous in None      Next in None      

Question Number 63154 by Rio Michael last updated on 29/Jun/19

Given that α and β are the roots oc the equation ax^2 +bx+c=0  . Show that   λμb^2 = ac(λ + μ)^2 , where (α/β)= (λ/μ).

$${Given}\:{that}\:\alpha\:{and}\:\beta\:{are}\:{the}\:{roots}\:{oc}\:{the}\:{equation}\:{ax}^{\mathrm{2}} +{bx}+{c}=\mathrm{0} \\ $$$$.\:{Show}\:{that}\:\:\:\lambda\mu{b}^{\mathrm{2}} =\:{ac}\left(\lambda\:+\:\mu\right)^{\mathrm{2}} ,\:{where}\:\frac{\alpha}{\beta}=\:\frac{\lambda}{\mu}. \\ $$

Commented by Prithwish sen last updated on 30/Jun/19

α+β=−(b/a) and αβ =(c/a)  Now  (α+β)^2 =((αβ(α+β)^2 )/(αβ)) = αβ ((α/β) +(β/α) +2 )  (b^2 /a^2 ) = (c/a) ((λ/μ) + (μ/λ) + 2 ) = (c/a) (((λ+μ)^2 )/(λμ))  λμb^2 =ac(λ+μ)^2   proved.

$$\alpha+\beta=−\frac{\mathrm{b}}{\mathrm{a}}\:\mathrm{and}\:\alpha\beta\:=\frac{\mathrm{c}}{\mathrm{a}} \\ $$$$\mathrm{Now} \\ $$$$\left(\alpha+\beta\right)^{\mathrm{2}} =\frac{\alpha\beta\left(\alpha+\beta\right)^{\mathrm{2}} }{\alpha\beta}\:=\:\alpha\beta\:\left(\frac{\alpha}{\beta}\:+\frac{\beta}{\alpha}\:+\mathrm{2}\:\right) \\ $$$$\frac{\mathrm{b}^{\mathrm{2}} }{\mathrm{a}^{\mathrm{2}} }\:=\:\frac{\mathrm{c}}{\mathrm{a}}\:\left(\frac{\lambda}{\mu}\:+\:\frac{\mu}{\lambda}\:+\:\mathrm{2}\:\right)\:=\:\frac{\mathrm{c}}{\mathrm{a}}\:\frac{\left(\lambda+\mu\right)^{\mathrm{2}} }{\lambda\mu} \\ $$$$\lambda\mu\mathrm{b}^{\mathrm{2}} =\mathrm{ac}\left(\lambda+\mu\right)^{\mathrm{2}} \:\:\mathrm{proved}. \\ $$$$ \\ $$$$ \\ $$

Commented by Rio Michael last updated on 02/Jul/19

cool i think thats correct.

$${cool}\:{i}\:{think}\:{thats}\:{correct}. \\ $$

Commented by Rio Michael last updated on 02/Jul/19

please check my solution.    α+β = −(b/(a  ))  and αβ=(c/a)  −b= a(α +β)  and b^2 = a^2 (α+β)^2 ..........(i)   and  αβ= (c/a)..........(ii)  taking eqn (i) × (ii)  ⇒ αβb^2 = (c/a)×a^2 (α+β)^2        αβ b^2  = ac(α +β)  since  (α/β) =(λ/μ)  then  α=λ and β= μ   and substituting we get.    λμb^2 = ac(λ + μ)^2  proved.       please make more corrections.

$${please}\:{check}\:{my}\:{solution}. \\ $$$$ \\ $$$$\alpha+\beta\:=\:−\frac{{b}}{{a}\:\:}\:\:{and}\:\alpha\beta=\frac{{c}}{{a}} \\ $$$$−{b}=\:{a}\left(\alpha\:+\beta\right) \\ $$$${and}\:{b}^{\mathrm{2}} =\:{a}^{\mathrm{2}} \left(\alpha+\beta\right)^{\mathrm{2}} ..........\left({i}\right) \\ $$$$\:{and}\:\:\alpha\beta=\:\frac{{c}}{{a}}..........\left({ii}\right) \\ $$$${taking}\:{eqn}\:\left({i}\right)\:×\:\left({ii}\right) \\ $$$$\Rightarrow\:\alpha\beta{b}^{\mathrm{2}} =\:\frac{{c}}{{a}}×{a}^{\mathrm{2}} \left(\alpha+\beta\right)^{\mathrm{2}} \\ $$$$\:\:\:\:\:\alpha\beta\:{b}^{\mathrm{2}} \:=\:{ac}\left(\alpha\:+\beta\right) \\ $$$${since}\:\:\frac{\alpha}{\beta}\:=\frac{\lambda}{\mu}\:\:{then}\:\:\alpha=\lambda\:{and}\:\beta=\:\mu\: \\ $$$${and}\:{substituting}\:{we}\:{get}. \\ $$$$\:\:\lambda\mu{b}^{\mathrm{2}} =\:{ac}\left(\lambda\:+\:\mu\right)^{\mathrm{2}} \:{proved}.\:\:\: \\ $$$$ \\ $$$${please}\:{make}\:{more}\:{corrections}. \\ $$$$ \\ $$$$ \\ $$

Commented by Prithwish sen last updated on 02/Jul/19

I think  (α/λ) = (β/μ) = k (let)  then αβ b^2 = ac(α+β)^2  ⇒ k^2 λμb^2 =k^2 ac(λ+μ)^2

$$\mathrm{I}\:\mathrm{think} \\ $$$$\frac{\alpha}{\lambda}\:=\:\frac{\beta}{\mu}\:=\:\mathrm{k}\:\left(\mathrm{let}\right) \\ $$$$\mathrm{then}\:\alpha\beta\:\mathrm{b}^{\mathrm{2}} =\:\mathrm{ac}\left(\alpha+\beta\right)^{\mathrm{2}} \:\Rightarrow\:\mathrm{k}^{\mathrm{2}} \lambda\mu\mathrm{b}^{\mathrm{2}} =\mathrm{k}^{\mathrm{2}} \mathrm{ac}\left(\lambda+\mu\right)^{\mathrm{2}} \\ $$$$ \\ $$

Commented by Rio Michael last updated on 02/Jul/19

thats also a good idea

$${thats}\:{also}\:{a}\:{good}\:{idea} \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com