Question and Answers Forum

All Questions      Topic List

Algebra Questions

Previous in All Question      Next in All Question      

Previous in Algebra      Next in Algebra      

Question Number 63162 by Rio Michael last updated on 29/Jun/19

Find the set of values of x which satisfy the inequalities   (2/(x−1))≤(1/x)  and  x^2 −∣3x∣+2<0

Findthesetofvaluesofxwhichsatisfytheinequalities 2x11xandx23x+2<0

Commented byPrithwish sen last updated on 30/Jun/19

(2/(x−1))≤(1/x) ⇒x≤−1  x^2 −∣3x∣ +2 <0  ⇒ x^2 +3x+2< 0 ( ∵ x≤−1)  i.e (x+1)(x+2)< 0  either                             or    (x+1)<0                       (x+1)>0  and(x+2)>0              and (x+2)< 0  ⇒ −2<x<−1              ⇒ −1<x<−2   ∵ x≤ −1  ∴  the only possible solution is                                       −2<x<−1  please check the answer.

2x11xx1 x23x+2<0x2+3x+2<0(x1) i.e(x+1)(x+2)<0 eitheror (x+1)<0(x+1)>0 and(x+2)>0and(x+2)<0 2<x<11<x<2 x1theonlypossiblesolutionis 2<x<1 pleasechecktheanswer.

Commented byRio Michael last updated on 02/Jul/19

i think it makes sense..but explicit for O level students u know..  A level students can understand

ithinkitmakessense..butexplicitforOlevelstudentsuknow.. Alevelstudentscanunderstand

Commented bymathmax by abdo last updated on 30/Jun/19

(e_1 ) for x≠0 and x≠1    (2/(x−1)) ≤(1/x) ⇔(2/(x−1)) −(1/x) ≤0 ⇒((2x−x+1)/(x(x−1))) ≤0 ⇒  ((x+1)/(x(x−1))) ≤0  x          −∞                 −1                  0                1               +∞  x+1                     −        0        +                 +              +  x(x−1)              +                     +     0         −    0       +  ((x+1)/(x(x−1)    ))         −                     +               −                 +  ⇒ D_1 = ]−∞ ,−1] ∪  ]0,1[  (e_2 )           x^2 −3∣x∣ +2 <0 ⇒∣x∣−3∣x∣ +2 <0  Δ =9−8 =1  ⇒ ∣x∣_1 =((3+1)/2) =2 ⇒x =+^− 2  ∣x∣_2 =((3−1)/2) =1 ⇒x =+^− 1 ⇒x^2 −3∣x∣+2 =(∣x∣−1)(∣x∣−2)  (e_2 ) ⇒ (∣x∣−1)(∣x∣−2) <0  ⇒∣x∣ ∈]1,2[ ⇒ 1<∣x∣<2                 1<∣x∣ ⇒x>1 or x<−1 ⇒x ∈]−∞,−1[∪]1,+∞[  ∣x∣<2 ⇒−2<x<2 ⇒ ∩ =]−2,−1[∪]1,2[ =D_2  ⇒  D =D_1 ∩D_2 =....

(e1)forx0andx12x11x2x11x02xx+1x(x1)0 x+1x(x1)0 x101+ x+10+++ x(x1)++00+ x+1x(x1)++ D1=],1]]0,1[ (e2)x23x+2<0⇒∣x3x+2<0 Δ=98=1x1=3+12=2x=+2 x2=312=1x=+1x23x+2=(x1)(x2) (e2)(x1)(x2)<0⇒∣x]1,2[1<∣x∣<2 1<∣xx>1orx<1x],1[]1,+[ x∣<22<x<2=]2,1[]1,2[=D2 D=D1D2=....

Answered by ajfour last updated on 30/Jun/19

   1<∣x∣<2      { ((1<x<2)),((x ≤−1)) :}      or     { ((−2<x<−1)),((x ≤−1)) :}  ⇒  x∈φ            or   ⇒ −2< x <−1  hence  x∈(−1,−2).

1<∣x∣<2 {1<x<2x1or{2<x<1x1 xϕor2<x<1 hencex(1,2).

Terms of Service

Privacy Policy

Contact: info@tinkutara.com