Question and Answers Forum

All Questions      Topic List

Geometry Questions

Previous in All Question      Next in All Question      

Previous in Geometry      Next in Geometry      

Question Number 63176 by ajfour last updated on 30/Jun/19

Commented by ajfour last updated on 30/Jun/19

Find maximum coloured area  if line segments BP and AP   lie entirely outside the circle.

$${Find}\:{maximum}\:{coloured}\:{area} \\ $$$${if}\:{line}\:{segments}\:{BP}\:{and}\:{AP}\: \\ $$$${lie}\:{entirely}\:{outside}\:{the}\:{circle}. \\ $$

Answered by mr W last updated on 30/Jun/19

let θ=∠APB, ϕ=∠ACB  AB=(√(a^2 +b^2 −2ab cos θ))  AB=2R sin (ϕ/2)  ⇒ϕ=2 sin^(−1) ((√(a^2 +b^2 −2ab cos θ))/(2R))  (dϕ/dθ)=(2/(√(1−((a^2 +b^2 −2ab cos θ)/(4R^2 )))))×((ab sin θ)/(2R(√(a^2 +b^2 −2ab cos θ))))  =((2ab sin θ)/(√((4R^2 −a^2 −b^2 +2ab cos θ)(a^2 +b^2 −2ab cos θ))))  A_(blue) =(1/2)ab sin θ−(R^2 /2)(ϕ−sin ϕ)  (dA_(bue) /dθ)=0  ab cos θ−R^2 (1−cos ϕ)(dϕ/dθ)=0  ab cos θ−R^2 (2 sin^2  (ϕ/2))((2ab sin θ)/(√((4R^2 −a^2 −b^2 +2ab cos θ)(a^2 +b^2 −2ab cos θ))))=0  ab cos θ−R^2 (((2(√(a^2 +b^2 −2ab cos θ)))/(2R)))((2ab sin θ)/(√((4R^2 −a^2 −b^2 +2ab cos θ)(a^2 +b^2 −2ab cos θ))))=0  cos θ−((2Rsin θ)/(√((4R^2 −a^2 −b^2 +2ab cos θ))))=0  4R^2  tan^2  θ=4R^2 −a^2 −b^2 +2ab cos θ  4R^2 =(4R^2 −a^2 −b^2 +2ab cos θ)(1+cos^2  θ)  1=(1−((a^2 +b^2 )/(4R^2 ))+((ab)/(2R^2 )) cos θ)(1+cos^2  θ)  1=(1−λ+μ cos θ)(1+cos^2  θ)  0=−λ+μ cos θ+(1−λ)cos^2  θ+μ cos^3  θ  ⇒cos^3  θ+((1−λ)/μ) cos^2  θ+cos θ−(λ/μ)=0  ⇒cos θ=.....

$${let}\:\theta=\angle{APB},\:\varphi=\angle{ACB} \\ $$$${AB}=\sqrt{{a}^{\mathrm{2}} +{b}^{\mathrm{2}} −\mathrm{2}{ab}\:\mathrm{cos}\:\theta} \\ $$$${AB}=\mathrm{2}{R}\:\mathrm{sin}\:\frac{\varphi}{\mathrm{2}} \\ $$$$\Rightarrow\varphi=\mathrm{2}\:\mathrm{sin}^{−\mathrm{1}} \frac{\sqrt{{a}^{\mathrm{2}} +{b}^{\mathrm{2}} −\mathrm{2}{ab}\:\mathrm{cos}\:\theta}}{\mathrm{2}{R}} \\ $$$$\frac{{d}\varphi}{{d}\theta}=\frac{\mathrm{2}}{\sqrt{\mathrm{1}−\frac{{a}^{\mathrm{2}} +{b}^{\mathrm{2}} −\mathrm{2}{ab}\:\mathrm{cos}\:\theta}{\mathrm{4}{R}^{\mathrm{2}} }}}×\frac{{ab}\:\mathrm{sin}\:\theta}{\mathrm{2}{R}\sqrt{{a}^{\mathrm{2}} +{b}^{\mathrm{2}} −\mathrm{2}{ab}\:\mathrm{cos}\:\theta}} \\ $$$$=\frac{\mathrm{2}{ab}\:\mathrm{sin}\:\theta}{\sqrt{\left(\mathrm{4}{R}^{\mathrm{2}} −{a}^{\mathrm{2}} −{b}^{\mathrm{2}} +\mathrm{2}{ab}\:\mathrm{cos}\:\theta\right)\left({a}^{\mathrm{2}} +{b}^{\mathrm{2}} −\mathrm{2}{ab}\:\mathrm{cos}\:\theta\right)}} \\ $$$${A}_{{blue}} =\frac{\mathrm{1}}{\mathrm{2}}{ab}\:\mathrm{sin}\:\theta−\frac{{R}^{\mathrm{2}} }{\mathrm{2}}\left(\varphi−\mathrm{sin}\:\varphi\right) \\ $$$$\frac{{dA}_{{bue}} }{{d}\theta}=\mathrm{0} \\ $$$${ab}\:\mathrm{cos}\:\theta−{R}^{\mathrm{2}} \left(\mathrm{1}−\mathrm{cos}\:\varphi\right)\frac{{d}\varphi}{{d}\theta}=\mathrm{0} \\ $$$${ab}\:\mathrm{cos}\:\theta−{R}^{\mathrm{2}} \left(\mathrm{2}\:\mathrm{sin}^{\mathrm{2}} \:\frac{\varphi}{\mathrm{2}}\right)\frac{\mathrm{2}{ab}\:\mathrm{sin}\:\theta}{\sqrt{\left(\mathrm{4}{R}^{\mathrm{2}} −{a}^{\mathrm{2}} −{b}^{\mathrm{2}} +\mathrm{2}{ab}\:\mathrm{cos}\:\theta\right)\left({a}^{\mathrm{2}} +{b}^{\mathrm{2}} −\mathrm{2}{ab}\:\mathrm{cos}\:\theta\right)}}=\mathrm{0} \\ $$$${ab}\:\mathrm{cos}\:\theta−{R}^{\mathrm{2}} \left(\frac{\mathrm{2}\sqrt{{a}^{\mathrm{2}} +{b}^{\mathrm{2}} −\mathrm{2}{ab}\:\mathrm{cos}\:\theta}}{\mathrm{2}{R}}\right)\frac{\mathrm{2}{ab}\:\mathrm{sin}\:\theta}{\sqrt{\left(\mathrm{4}{R}^{\mathrm{2}} −{a}^{\mathrm{2}} −{b}^{\mathrm{2}} +\mathrm{2}{ab}\:\mathrm{cos}\:\theta\right)\left({a}^{\mathrm{2}} +{b}^{\mathrm{2}} −\mathrm{2}{ab}\:\mathrm{cos}\:\theta\right)}}=\mathrm{0} \\ $$$$\mathrm{cos}\:\theta−\frac{\mathrm{2}{R}\mathrm{sin}\:\theta}{\sqrt{\left(\mathrm{4}{R}^{\mathrm{2}} −{a}^{\mathrm{2}} −{b}^{\mathrm{2}} +\mathrm{2}{ab}\:\mathrm{cos}\:\theta\right)}}=\mathrm{0} \\ $$$$\mathrm{4}{R}^{\mathrm{2}} \:\mathrm{tan}^{\mathrm{2}} \:\theta=\mathrm{4}{R}^{\mathrm{2}} −{a}^{\mathrm{2}} −{b}^{\mathrm{2}} +\mathrm{2}{ab}\:\mathrm{cos}\:\theta \\ $$$$\mathrm{4}{R}^{\mathrm{2}} =\left(\mathrm{4}{R}^{\mathrm{2}} −{a}^{\mathrm{2}} −{b}^{\mathrm{2}} +\mathrm{2}{ab}\:\mathrm{cos}\:\theta\right)\left(\mathrm{1}+\mathrm{cos}^{\mathrm{2}} \:\theta\right) \\ $$$$\mathrm{1}=\left(\mathrm{1}−\frac{{a}^{\mathrm{2}} +{b}^{\mathrm{2}} }{\mathrm{4}{R}^{\mathrm{2}} }+\frac{{ab}}{\mathrm{2}{R}^{\mathrm{2}} }\:\mathrm{cos}\:\theta\right)\left(\mathrm{1}+\mathrm{cos}^{\mathrm{2}} \:\theta\right) \\ $$$$\mathrm{1}=\left(\mathrm{1}−\lambda+\mu\:\mathrm{cos}\:\theta\right)\left(\mathrm{1}+\mathrm{cos}^{\mathrm{2}} \:\theta\right) \\ $$$$\mathrm{0}=−\lambda+\mu\:\mathrm{cos}\:\theta+\left(\mathrm{1}−\lambda\right)\mathrm{cos}^{\mathrm{2}} \:\theta+\mu\:\mathrm{cos}^{\mathrm{3}} \:\theta \\ $$$$\Rightarrow\mathrm{cos}^{\mathrm{3}} \:\theta+\frac{\mathrm{1}−\lambda}{\mu}\:\mathrm{cos}^{\mathrm{2}} \:\theta+\mathrm{cos}\:\theta−\frac{\lambda}{\mu}=\mathrm{0} \\ $$$$\Rightarrow\mathrm{cos}\:\theta=..... \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com