Question and Answers Forum

All Questions      Topic List

Relation and Functions Questions

Previous in All Question      Next in All Question      

Previous in Relation and Functions      Next in Relation and Functions      

Question Number 63215 by mathmax by abdo last updated on 30/Jun/19

calculate lim_(n→+∞) {n (1+(1/n))^n −en}

$${calculate}\:{lim}_{{n}\rightarrow+\infty} \left\{{n}\:\left(\mathrm{1}+\frac{\mathrm{1}}{{n}}\right)^{{n}} −{en}\right\} \\ $$

Commented by mathmax by abdo last updated on 01/Jul/19

let  A_n =n(1+(1/n))^n −en ⇒ A_n =n{ (1+(1/n))^n −e}  we have  (1+(1/n))^n  =e^(nln(1+(1/n)))         but  ln(1+x) =Σ_(n=1) ^∞  (((−1)^(n−1) x^n )/n) =x−(x^2 /2)+(x^3 /3) −...⇒  ln(1+(1/n))=(1/n) −(1/(2n^2 ))+(1/(3n^3 )) +o((1/n^3 ))  (n→+∞) ⇒nln(1+(1/n))=1−(1/(2n)) +(1/(3n^2 ))o((1/n^2 )) ⇒  e^(nln(1+(1/n)))  =e^(1−(1/(2n)) +(1/(3n^2 ))o((1/n^2 )))  =e  e^(−(1/(2n))+(1/(3n^2 ))+o((1/n)))    due to e^u  =1+u +o(u) ⇒  e^(−(1/(2n))+o((1/n)))  =1−(1/(2n)) +(1/(3n^2 ))+o((1/n^2 )) ⇒ A_n =n{ e(1−(1/(2n))+(1/(3n^2 ))+o((1/n^2 ))−e} ⇒  A_n =(e/2) +(e/(3n)) +o((1/n)) ⇒lim_(n→+∞)  A_n    =(e/2)  =

$${let}\:\:{A}_{{n}} ={n}\left(\mathrm{1}+\frac{\mathrm{1}}{{n}}\right)^{{n}} −{en}\:\Rightarrow\:{A}_{{n}} ={n}\left\{\:\left(\mathrm{1}+\frac{\mathrm{1}}{{n}}\right)^{{n}} −{e}\right\}\:\:{we}\:{have} \\ $$$$\left(\mathrm{1}+\frac{\mathrm{1}}{{n}}\right)^{{n}} \:={e}^{{nln}\left(\mathrm{1}+\frac{\mathrm{1}}{{n}}\right)} \:\:\:\:\:\:\:\:{but}\:\:{ln}\left(\mathrm{1}+{x}\right)\:=\sum_{{n}=\mathrm{1}} ^{\infty} \:\frac{\left(−\mathrm{1}\right)^{{n}−\mathrm{1}} {x}^{{n}} }{{n}}\:={x}−\frac{{x}^{\mathrm{2}} }{\mathrm{2}}+\frac{{x}^{\mathrm{3}} }{\mathrm{3}}\:−...\Rightarrow \\ $$$${ln}\left(\mathrm{1}+\frac{\mathrm{1}}{{n}}\right)=\frac{\mathrm{1}}{{n}}\:−\frac{\mathrm{1}}{\mathrm{2}{n}^{\mathrm{2}} }+\frac{\mathrm{1}}{\mathrm{3}{n}^{\mathrm{3}} }\:+{o}\left(\frac{\mathrm{1}}{{n}^{\mathrm{3}} }\right)\:\:\left({n}\rightarrow+\infty\right)\:\Rightarrow{nln}\left(\mathrm{1}+\frac{\mathrm{1}}{{n}}\right)=\mathrm{1}−\frac{\mathrm{1}}{\mathrm{2}{n}}\:+\frac{\mathrm{1}}{\mathrm{3}{n}^{\mathrm{2}} }{o}\left(\frac{\mathrm{1}}{{n}^{\mathrm{2}} }\right)\:\Rightarrow \\ $$$${e}^{{nln}\left(\mathrm{1}+\frac{\mathrm{1}}{{n}}\right)} \:={e}^{\mathrm{1}−\frac{\mathrm{1}}{\mathrm{2}{n}}\:+\frac{\mathrm{1}}{\mathrm{3}{n}^{\mathrm{2}} }{o}\left(\frac{\mathrm{1}}{{n}^{\mathrm{2}} }\right)} \:={e}\:\:{e}^{−\frac{\mathrm{1}}{\mathrm{2}{n}}+\frac{\mathrm{1}}{\mathrm{3}{n}^{\mathrm{2}} }+{o}\left(\frac{\mathrm{1}}{{n}}\right)} \:\:\:{due}\:{to}\:{e}^{{u}} \:=\mathrm{1}+{u}\:+{o}\left({u}\right)\:\Rightarrow \\ $$$${e}^{−\frac{\mathrm{1}}{\mathrm{2}{n}}+{o}\left(\frac{\mathrm{1}}{{n}}\right)} \:=\mathrm{1}−\frac{\mathrm{1}}{\mathrm{2}{n}}\:+\frac{\mathrm{1}}{\mathrm{3}{n}^{\mathrm{2}} }+{o}\left(\frac{\mathrm{1}}{{n}^{\mathrm{2}} }\right)\:\Rightarrow\:{A}_{{n}} ={n}\left\{\:{e}\left(\mathrm{1}−\frac{\mathrm{1}}{\mathrm{2}{n}}+\frac{\mathrm{1}}{\mathrm{3}{n}^{\mathrm{2}} }+{o}\left(\frac{\mathrm{1}}{{n}^{\mathrm{2}} }\right)−{e}\right\}\:\Rightarrow\right. \\ $$$${A}_{{n}} =\frac{{e}}{\mathrm{2}}\:+\frac{{e}}{\mathrm{3}{n}}\:+{o}\left(\frac{\mathrm{1}}{{n}}\right)\:\Rightarrow{lim}_{{n}\rightarrow+\infty} \:{A}_{{n}} \:\:\:=\frac{{e}}{\mathrm{2}} \\ $$$$= \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com