Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 63351 by aliesam last updated on 02/Jul/19

Commented by mathmax by abdo last updated on 03/Jul/19

let I =∫   (dx/(4+(x−3)^2 ))   changement  x−3 =2t give  I = ∫  ((2dt)/(4+4t^2 )) = ∫    (dt/(2(1+t^2 ))) =(1/2) arctan(t)+c  I =(1/2)arctan(((x−3)/2)) +c .

$${let}\:{I}\:=\int\:\:\:\frac{{dx}}{\mathrm{4}+\left({x}−\mathrm{3}\right)^{\mathrm{2}} }\:\:\:{changement}\:\:{x}−\mathrm{3}\:=\mathrm{2}{t}\:{give} \\ $$$${I}\:=\:\int\:\:\frac{\mathrm{2}{dt}}{\mathrm{4}+\mathrm{4}{t}^{\mathrm{2}} }\:=\:\int\:\:\:\:\frac{{dt}}{\mathrm{2}\left(\mathrm{1}+{t}^{\mathrm{2}} \right)}\:=\frac{\mathrm{1}}{\mathrm{2}}\:{arctan}\left({t}\right)+{c} \\ $$$${I}\:=\frac{\mathrm{1}}{\mathrm{2}}{arctan}\left(\frac{{x}−\mathrm{3}}{\mathrm{2}}\right)\:+{c}\:. \\ $$

Commented by mathmax by abdo last updated on 03/Jul/19

let A = ∫  ((2tan^3 x +2tanx +1)/(tanx(1+tan^2 x)^2 )) dx   if tan(x)^((2))  means (d^2 /dx^2 )tanx we get  tanx^((1))  =1+tan^2 x ⇒tanx^((2)) =2tanx(1+tan^2 x) ⇒  I = ∫   ((2tan^3 x+2tanx +1)/(tanx(1+2tanx(1+tan^2 x))^2 ))dx =∫   ((2tan^3 x +2tanx +1)/(tanx(2tan^3 x +2tanx +1)^2 ))dx  = ∫     (dx/(tanx(2tan^3 x +2tanx +1)))  changement tanx =t give  I = ∫     (1/(t( 2t^(3 ) +2t +1))) (dt/(1+t^2 )) =∫      (dt/(t(1+t^2 )(2t^3  +2t +1)))  let decompose F(t) =(1/(t(1+t^2 )(2t^3  +2t +1))) ⇒  F(t) =(a/t) +((bt +c)/(t^2  +1)) +((dt^2  +et +f)/(2t^3  +2t +1)) ⇒  ∫ F(t)dt =∫ ((adt)/t) +∫  ((bt +c)/(t^2  +1)) +∫   ((dt^2  +et +f)/(2t^3  +2t +1)) rest to calculate the coefficient a_i   be continued...

$${let}\:{A}\:=\:\int\:\:\frac{\mathrm{2}{tan}^{\mathrm{3}} {x}\:+\mathrm{2}{tanx}\:+\mathrm{1}}{{tanx}\left(\mathrm{1}+{tan}^{\mathrm{2}} {x}\right)^{\mathrm{2}} }\:{dx}\:\:\:{if}\:{tan}\left({x}\right)^{\left(\mathrm{2}\right)} \:{means}\:\frac{{d}^{\mathrm{2}} }{{dx}^{\mathrm{2}} }{tanx}\:{we}\:{get} \\ $$$${tanx}^{\left(\mathrm{1}\right)} \:=\mathrm{1}+{tan}^{\mathrm{2}} {x}\:\Rightarrow{tanx}^{\left(\mathrm{2}\right)} =\mathrm{2}{tanx}\left(\mathrm{1}+{tan}^{\mathrm{2}} {x}\right)\:\Rightarrow \\ $$$${I}\:=\:\int\:\:\:\frac{\mathrm{2}{tan}^{\mathrm{3}} {x}+\mathrm{2}{tanx}\:+\mathrm{1}}{{tanx}\left(\mathrm{1}+\mathrm{2}{tanx}\left(\mathrm{1}+{tan}^{\mathrm{2}} {x}\right)\right)^{\mathrm{2}} }{dx}\:=\int\:\:\:\frac{\mathrm{2}{tan}^{\mathrm{3}} {x}\:+\mathrm{2}{tanx}\:+\mathrm{1}}{{tanx}\left(\mathrm{2}{tan}^{\mathrm{3}} {x}\:+\mathrm{2}{tanx}\:+\mathrm{1}\right)^{\mathrm{2}} }{dx} \\ $$$$=\:\int\:\:\:\:\:\frac{{dx}}{{tanx}\left(\mathrm{2}{tan}^{\mathrm{3}} {x}\:+\mathrm{2}{tanx}\:+\mathrm{1}\right)}\:\:{changement}\:{tanx}\:={t}\:{give} \\ $$$${I}\:=\:\int\:\:\:\:\:\frac{\mathrm{1}}{{t}\left(\:\mathrm{2}{t}^{\mathrm{3}\:} +\mathrm{2}{t}\:+\mathrm{1}\right)}\:\frac{{dt}}{\mathrm{1}+{t}^{\mathrm{2}} }\:=\int\:\:\:\:\:\:\frac{{dt}}{{t}\left(\mathrm{1}+{t}^{\mathrm{2}} \right)\left(\mathrm{2}{t}^{\mathrm{3}} \:+\mathrm{2}{t}\:+\mathrm{1}\right)} \\ $$$${let}\:{decompose}\:{F}\left({t}\right)\:=\frac{\mathrm{1}}{{t}\left(\mathrm{1}+{t}^{\mathrm{2}} \right)\left(\mathrm{2}{t}^{\mathrm{3}} \:+\mathrm{2}{t}\:+\mathrm{1}\right)}\:\Rightarrow \\ $$$${F}\left({t}\right)\:=\frac{{a}}{{t}}\:+\frac{{bt}\:+{c}}{{t}^{\mathrm{2}} \:+\mathrm{1}}\:+\frac{{dt}^{\mathrm{2}} \:+{et}\:+{f}}{\mathrm{2}{t}^{\mathrm{3}} \:+\mathrm{2}{t}\:+\mathrm{1}}\:\Rightarrow \\ $$$$\int\:{F}\left({t}\right){dt}\:=\int\:\frac{{adt}}{{t}}\:+\int\:\:\frac{{bt}\:+{c}}{{t}^{\mathrm{2}} \:+\mathrm{1}}\:+\int\:\:\:\frac{{dt}^{\mathrm{2}} \:+{et}\:+{f}}{\mathrm{2}{t}^{\mathrm{3}} \:+\mathrm{2}{t}\:+\mathrm{1}}\:{rest}\:{to}\:{calculate}\:{the}\:{coefficient}\:{a}_{{i}} \\ $$$${be}\:{continued}... \\ $$$$ \\ $$

Answered by Rio Michael last updated on 02/Jul/19

1. ∫(dx/(4+(x−3)^2 )) = ∫(1/(x^2 −6x+13)) dx  ⇒ ln∣x^2 −6x +13∣ please check

$$\mathrm{1}.\:\int\frac{{dx}}{\mathrm{4}+\left({x}−\mathrm{3}\right)^{\mathrm{2}} }\:=\:\int\frac{\mathrm{1}}{{x}^{\mathrm{2}} −\mathrm{6}{x}+\mathrm{13}}\:{dx} \\ $$$$\Rightarrow\:{ln}\mid{x}^{\mathrm{2}} −\mathrm{6}{x}\:+\mathrm{13}\mid\:{please}\:{check} \\ $$

Commented by MJS last updated on 02/Jul/19

(d/dx)[ln (x^2 −6x+13)]=(1/(x^2 −6x+13))×(2x−6)  so you′re wrong

$$\frac{{d}}{{dx}}\left[\mathrm{ln}\:\left({x}^{\mathrm{2}} −\mathrm{6}{x}+\mathrm{13}\right)\right]=\frac{\mathrm{1}}{{x}^{\mathrm{2}} −\mathrm{6}{x}+\mathrm{13}}×\left(\mathrm{2}{x}−\mathrm{6}\right) \\ $$$$\mathrm{so}\:\mathrm{you}'\mathrm{re}\:\mathrm{wrong} \\ $$

Commented by Rio Michael last updated on 04/Jul/19

 your right.

$$\:{your}\:{right}. \\ $$

Answered by MJS last updated on 03/Jul/19

∫(dx/(4+(x−3)^2 ))=       [t=((x−3)/2) → dx=2dt]  =(1/2)∫(dt/(t^2 +1))=(1/2)arctan t =(1/2)arctan ((x−3)/2) +C

$$\int\frac{{dx}}{\mathrm{4}+\left({x}−\mathrm{3}\right)^{\mathrm{2}} }= \\ $$$$\:\:\:\:\:\left[{t}=\frac{{x}−\mathrm{3}}{\mathrm{2}}\:\rightarrow\:{dx}=\mathrm{2}{dt}\right] \\ $$$$=\frac{\mathrm{1}}{\mathrm{2}}\int\frac{{dt}}{{t}^{\mathrm{2}} +\mathrm{1}}=\frac{\mathrm{1}}{\mathrm{2}}\mathrm{arctan}\:{t}\:=\frac{\mathrm{1}}{\mathrm{2}}\mathrm{arctan}\:\frac{{x}−\mathrm{3}}{\mathrm{2}}\:+{C} \\ $$

Commented by aliesam last updated on 03/Jul/19

god bless you sir

$${god}\:{bless}\:{you}\:{sir} \\ $$

Answered by MJS last updated on 03/Jul/19

the 2^(nd)  one cannot be solved with  tan (x^2 )  but it′easy like this:  ∫((2tan^3  x +2tan x +1)/(tan x (1+tan^2  x)^2 ))dx=       [t=tan x → dx=dtcos^2  x]  =∫((2t^3 +2t+1)/(t(t^2 +1)^2 ))dt=∫(−(t/((t^2 +1)^2 ))−(t/(t^2 +1))+(2/(t^2 +1))+(1/t))dt=  =(1/(2(t^2 +1)))−(1/2)ln (t^2 +1) +2arctan t +ln t  ...

$$\mathrm{the}\:\mathrm{2}^{\mathrm{nd}} \:\mathrm{one}\:\mathrm{cannot}\:\mathrm{be}\:\mathrm{solved}\:\mathrm{with} \\ $$$$\mathrm{tan}\:\left({x}^{\mathrm{2}} \right) \\ $$$$\mathrm{but}\:\mathrm{it}'\mathrm{easy}\:\mathrm{like}\:\mathrm{this}: \\ $$$$\int\frac{\mathrm{2tan}^{\mathrm{3}} \:{x}\:+\mathrm{2tan}\:{x}\:+\mathrm{1}}{\mathrm{tan}\:{x}\:\left(\mathrm{1}+\mathrm{tan}^{\mathrm{2}} \:{x}\right)^{\mathrm{2}} }{dx}= \\ $$$$\:\:\:\:\:\left[{t}=\mathrm{tan}\:{x}\:\rightarrow\:{dx}={dt}\mathrm{cos}^{\mathrm{2}} \:{x}\right] \\ $$$$=\int\frac{\mathrm{2}{t}^{\mathrm{3}} +\mathrm{2}{t}+\mathrm{1}}{{t}\left({t}^{\mathrm{2}} +\mathrm{1}\right)^{\mathrm{2}} }{dt}=\int\left(−\frac{{t}}{\left({t}^{\mathrm{2}} +\mathrm{1}\right)^{\mathrm{2}} }−\frac{{t}}{{t}^{\mathrm{2}} +\mathrm{1}}+\frac{\mathrm{2}}{{t}^{\mathrm{2}} +\mathrm{1}}+\frac{\mathrm{1}}{{t}}\right){dt}= \\ $$$$=\frac{\mathrm{1}}{\mathrm{2}\left({t}^{\mathrm{2}} +\mathrm{1}\right)}−\frac{\mathrm{1}}{\mathrm{2}}\mathrm{ln}\:\left({t}^{\mathrm{2}} +\mathrm{1}\right)\:+\mathrm{2arctan}\:{t}\:+\mathrm{ln}\:{t} \\ $$$$... \\ $$

Commented by aliesam last updated on 03/Jul/19

thats right its a typo

$${thats}\:{right}\:{its}\:{a}\:{typo} \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com