Question and Answers Forum

All Questions      Topic List

Algebra Questions

Previous in All Question      Next in All Question      

Previous in Algebra      Next in Algebra      

Question Number 63373 by MJS last updated on 31/Jul/19

just found this on the web  I thought it might help in some cases where  quartics appear i.e. Sir Aifour′s geometric  questions. sometimes we know the nature of  the roots, but how to use this information?    ax^4 +bx^3 +cx^2 +dx+e=0  1. divide by a  2. x=z−(b/(4a))  this leads to the reduced    z^4 +pz^2 +qz+r=0    now we find the nature of the roots:  T_1 =16p^4 r−4p^3 q^2 −128p^2 r^2 +144pq^2 r−27q^4 +256r^3   T_2 =p^2 +12r  T_3 =−p^2 +4r  T_1 <0 ⇒ 2 distinct real and 2 conjugated complex roots  T_1 >0∧(p<0∧T_3 <0) ⇒ 4 distinct real roots  T_1 >0∧(p>0∨T_3 >0) ⇒ 2 pairs of conjugated complex roots  T_1 =0∧(p<0∧T_3 <0∧T_2 ≠0) ⇒ 1 real double and 2 real simple roots  T_1 =0∧(T_3 >0∨(p>0∧(T_3 ≠0∨q≠0))) ⇒ 1 real double and 2 conjugated complex roots  T_1 =0∧(T_2 =0∧T_3 ≠0) ⇒ 1 real triple and 1 real simple roots  T_1 =0∧(T_3 =0∧p<0) ⇒ 2 real double roots  T_1 =0∧(T_3 =0∧p>0∧q=0) ⇒ 2 conjugated complex double roots  T_1 =0∧T_2 =0 ⇒ all roots are equal

$$\mathrm{just}\:\mathrm{found}\:\mathrm{this}\:\mathrm{on}\:\mathrm{the}\:\mathrm{web} \\ $$$$\mathrm{I}\:\mathrm{thought}\:\mathrm{it}\:\mathrm{might}\:\mathrm{help}\:\mathrm{in}\:\mathrm{some}\:\mathrm{cases}\:\mathrm{where} \\ $$$$\mathrm{quartics}\:\mathrm{appear}\:\mathrm{i}.\mathrm{e}.\:\mathrm{Sir}\:\mathrm{Aifour}'\mathrm{s}\:\mathrm{geometric} \\ $$$$\mathrm{questions}.\:\mathrm{sometimes}\:\mathrm{we}\:\mathrm{know}\:\mathrm{the}\:\mathrm{nature}\:\mathrm{of} \\ $$$$\mathrm{the}\:\mathrm{roots},\:\mathrm{but}\:\mathrm{how}\:\mathrm{to}\:\mathrm{use}\:\mathrm{this}\:\mathrm{information}? \\ $$$$ \\ $$$${ax}^{\mathrm{4}} +{bx}^{\mathrm{3}} +{cx}^{\mathrm{2}} +{dx}+{e}=\mathrm{0} \\ $$$$\mathrm{1}.\:\mathrm{divide}\:\mathrm{by}\:{a} \\ $$$$\mathrm{2}.\:{x}={z}−\frac{{b}}{\mathrm{4}{a}} \\ $$$$\mathrm{this}\:\mathrm{leads}\:\mathrm{to}\:\mathrm{the}\:\mathrm{reduced} \\ $$$$ \\ $$$${z}^{\mathrm{4}} +{pz}^{\mathrm{2}} +{qz}+{r}=\mathrm{0} \\ $$$$ \\ $$$$\mathrm{now}\:\mathrm{we}\:\mathrm{find}\:\mathrm{the}\:\mathrm{nature}\:\mathrm{of}\:\mathrm{the}\:\mathrm{roots}: \\ $$$${T}_{\mathrm{1}} =\mathrm{16}{p}^{\mathrm{4}} {r}−\mathrm{4}{p}^{\mathrm{3}} {q}^{\mathrm{2}} −\mathrm{128}{p}^{\mathrm{2}} {r}^{\mathrm{2}} +\mathrm{144}{pq}^{\mathrm{2}} {r}−\mathrm{27}{q}^{\mathrm{4}} +\mathrm{256}{r}^{\mathrm{3}} \\ $$$${T}_{\mathrm{2}} ={p}^{\mathrm{2}} +\mathrm{12}{r} \\ $$$${T}_{\mathrm{3}} =−{p}^{\mathrm{2}} +\mathrm{4}{r} \\ $$$${T}_{\mathrm{1}} <\mathrm{0}\:\Rightarrow\:\mathrm{2}\:\mathrm{distinct}\:\mathrm{real}\:\mathrm{and}\:\mathrm{2}\:\mathrm{conjugated}\:\mathrm{complex}\:\mathrm{roots} \\ $$$${T}_{\mathrm{1}} >\mathrm{0}\wedge\left({p}<\mathrm{0}\wedge{T}_{\mathrm{3}} <\mathrm{0}\right)\:\Rightarrow\:\mathrm{4}\:\mathrm{distinct}\:\mathrm{real}\:\mathrm{roots} \\ $$$${T}_{\mathrm{1}} >\mathrm{0}\wedge\left({p}>\mathrm{0}\vee{T}_{\mathrm{3}} >\mathrm{0}\right)\:\Rightarrow\:\mathrm{2}\:\mathrm{pairs}\:\mathrm{of}\:\mathrm{conjugated}\:\mathrm{complex}\:\mathrm{roots} \\ $$$${T}_{\mathrm{1}} =\mathrm{0}\wedge\left({p}<\mathrm{0}\wedge{T}_{\mathrm{3}} <\mathrm{0}\wedge{T}_{\mathrm{2}} \neq\mathrm{0}\right)\:\Rightarrow\:\mathrm{1}\:\mathrm{real}\:\mathrm{double}\:\mathrm{and}\:\mathrm{2}\:\mathrm{real}\:\mathrm{simple}\:\mathrm{roots} \\ $$$${T}_{\mathrm{1}} =\mathrm{0}\wedge\left({T}_{\mathrm{3}} >\mathrm{0}\vee\left({p}>\mathrm{0}\wedge\left({T}_{\mathrm{3}} \neq\mathrm{0}\vee{q}\neq\mathrm{0}\right)\right)\right)\:\Rightarrow\:\mathrm{1}\:\mathrm{real}\:\mathrm{double}\:\mathrm{and}\:\mathrm{2}\:\mathrm{conjugated}\:\mathrm{complex}\:\mathrm{roots} \\ $$$${T}_{\mathrm{1}} =\mathrm{0}\wedge\left({T}_{\mathrm{2}} =\mathrm{0}\wedge{T}_{\mathrm{3}} \neq\mathrm{0}\right)\:\Rightarrow\:\mathrm{1}\:\mathrm{real}\:\mathrm{triple}\:\mathrm{and}\:\mathrm{1}\:\mathrm{real}\:\mathrm{simple}\:\mathrm{roots} \\ $$$${T}_{\mathrm{1}} =\mathrm{0}\wedge\left({T}_{\mathrm{3}} =\mathrm{0}\wedge{p}<\mathrm{0}\right)\:\Rightarrow\:\mathrm{2}\:\mathrm{real}\:\mathrm{double}\:\mathrm{roots} \\ $$$${T}_{\mathrm{1}} =\mathrm{0}\wedge\left({T}_{\mathrm{3}} =\mathrm{0}\wedge{p}>\mathrm{0}\wedge{q}=\mathrm{0}\right)\:\Rightarrow\:\mathrm{2}\:\mathrm{conjugated}\:\mathrm{complex}\:\mathrm{double}\:\mathrm{roots} \\ $$$${T}_{\mathrm{1}} =\mathrm{0}\wedge{T}_{\mathrm{2}} =\mathrm{0}\:\Rightarrow\:\mathrm{all}\:\mathrm{roots}\:\mathrm{are}\:\mathrm{equal} \\ $$

Commented by mr W last updated on 03/Jul/19

good information, thanks sir!

$${good}\:{information},\:{thanks}\:{sir}! \\ $$

Commented by MJS last updated on 31/Jul/19

I just corrected 2 typos  it′s not r but q in 2 cases...

$$\mathrm{I}\:\mathrm{just}\:\mathrm{corrected}\:\mathrm{2}\:\mathrm{typos} \\ $$$$\mathrm{it}'\mathrm{s}\:\mathrm{not}\:{r}\:\mathrm{but}\:{q}\:\mathrm{in}\:\mathrm{2}\:\mathrm{cases}... \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com