Question and Answers Forum

All Questions      Topic List

Trigonometry Questions

Previous in All Question      Next in All Question      

Previous in Trigonometry      Next in Trigonometry      

Question Number 63426 by Rio Michael last updated on 04/Jul/19

show that   (a) cos[2cos^(−1) (x) +sin^(−1) (x)]= −(√(1−x^2 ))   (b) ((sinα + sinβ)/(cosα−cosβ))=cot(((β−α)/2))  (c) 2cos((π/3)+p)≊ 1−(√3) if p is small enough to neglect p^2 .  (d) if θ =(1/2)sin^(−1) ((3/4)), show that sinθ−cosθ = ±(1/2)  (e)write tan3A in terms of tanA  (f) Factorise cosθ − cos3θ−cos5θ+cos7θ  (g)i) verify that f(x)=((sin2θ+sin10θ)/(cos2θ+cos10θ))=((2tan3θ)/(1−tan^2 3θ))    ii) hence find in radians the general solution of  f(x)=1  sir Forkum Michael

$${show}\:{that}\: \\ $$$$\left({a}\right)\:{cos}\left[\mathrm{2}{cos}^{−\mathrm{1}} \left({x}\right)\:+{sin}^{−\mathrm{1}} \left({x}\right)\right]=\:−\sqrt{\mathrm{1}−{x}^{\mathrm{2}} }\: \\ $$$$\left({b}\right)\:\frac{{sin}\alpha\:+\:{sin}\beta}{{cos}\alpha−{cos}\beta}={cot}\left(\frac{\beta−\alpha}{\mathrm{2}}\right) \\ $$$$\left({c}\right)\:\mathrm{2}{cos}\left(\frac{\pi}{\mathrm{3}}+{p}\right)\approxeq\:\mathrm{1}−\sqrt{\mathrm{3}}\:{if}\:{p}\:{is}\:{small}\:{enough}\:{to}\:{neglect}\:{p}^{\mathrm{2}} . \\ $$$$\left({d}\right)\:{if}\:\theta\:=\frac{\mathrm{1}}{\mathrm{2}}{sin}^{−\mathrm{1}} \left(\frac{\mathrm{3}}{\mathrm{4}}\right),\:{show}\:{that}\:{sin}\theta−{cos}\theta\:=\:\pm\frac{\mathrm{1}}{\mathrm{2}} \\ $$$$\left({e}\right){write}\:{tan}\mathrm{3}{A}\:{in}\:{terms}\:{of}\:{tanA} \\ $$$$\left({f}\right)\:{Factorise}\:{cos}\theta\:−\:{cos}\mathrm{3}\theta−{cos}\mathrm{5}\theta+{cos}\mathrm{7}\theta \\ $$$$\left.\left({g}\right){i}\right)\:{verify}\:{that}\:{f}\left({x}\right)=\frac{{sin}\mathrm{2}\theta+{sin}\mathrm{10}\theta}{{cos}\mathrm{2}\theta+{cos}\mathrm{10}\theta}=\frac{\mathrm{2}{tan}\mathrm{3}\theta}{\mathrm{1}−{tan}^{\mathrm{2}} \mathrm{3}\theta} \\ $$$$\left.\:\:{ii}\right)\:{hence}\:{find}\:{in}\:{radians}\:{the}\:{general}\:{solution}\:{of}\:\:{f}\left({x}\right)=\mathrm{1} \\ $$$${sir}\:{Forkum}\:{Michael} \\ $$

Commented by Tony Lin last updated on 04/Jul/19

(a)  let θ=cos^(−1) (x)⇒cosθ=x  let (π/2)−θ=sin^(−1) (x)⇒sinθ=(√(1−x^2 ))  cos[2θ+((π/2)−θ)]  =cos((π/2)+θ)  =−sinθ  =−(√(1−x^2 ))

$$\left({a}\right) \\ $$$${let}\:\theta={cos}^{−\mathrm{1}} \left({x}\right)\Rightarrow{cos}\theta={x} \\ $$$${let}\:\frac{\pi}{\mathrm{2}}−\theta={sin}^{−\mathrm{1}} \left({x}\right)\Rightarrow{sin}\theta=\sqrt{\mathrm{1}−{x}^{\mathrm{2}} } \\ $$$${cos}\left[\mathrm{2}\theta+\left(\frac{\pi}{\mathrm{2}}−\theta\right)\right] \\ $$$$={cos}\left(\frac{\pi}{\mathrm{2}}+\theta\right) \\ $$$$=−{sin}\theta \\ $$$$=−\sqrt{\mathrm{1}−{x}^{\mathrm{2}} } \\ $$

Commented by Tony Lin last updated on 04/Jul/19

(b)  ((sinα+sinβ)/(cosα−cosβ))  =((2sin(((α+β)/2))cos(((α−β)/2)))/(−2sin(((α+β)/2))sin(((α−β)/2))))  =((−cos(((α−β)/2)))/(sin(((α−β)/2))))  =cot(((β−α)/2))

$$\left({b}\right) \\ $$$$\frac{{sin}\alpha+{sin}\beta}{{cos}\alpha−{cos}\beta} \\ $$$$=\frac{\mathrm{2}{sin}\left(\frac{\alpha+\beta}{\mathrm{2}}\right){cos}\left(\frac{\alpha−\beta}{\mathrm{2}}\right)}{−\mathrm{2}{sin}\left(\frac{\alpha+\beta}{\mathrm{2}}\right){sin}\left(\frac{\alpha−\beta}{\mathrm{2}}\right)} \\ $$$$=\frac{−{cos}\left(\frac{\alpha−\beta}{\mathrm{2}}\right)}{{sin}\left(\frac{\alpha−\beta}{\mathrm{2}}\right)} \\ $$$$={cot}\left(\frac{\beta−\alpha}{\mathrm{2}}\right) \\ $$

Commented by Tony Lin last updated on 04/Jul/19

(d)  θ=(1/2)sin^(−1) ((3/4))  2θ=sin^(−1) ((3/4))  ⇒(3/4)=sin2θ  ⇒(3/4)=2sinθcosθ  (sinθ−cosθ)^2   =1−2sinθcosθ  =(1/4)  ⇒sinθ−cosθ=±(1/2)

$$\left({d}\right) \\ $$$$\theta=\frac{\mathrm{1}}{\mathrm{2}}{sin}^{−\mathrm{1}} \left(\frac{\mathrm{3}}{\mathrm{4}}\right) \\ $$$$\mathrm{2}\theta={sin}^{−\mathrm{1}} \left(\frac{\mathrm{3}}{\mathrm{4}}\right) \\ $$$$\Rightarrow\frac{\mathrm{3}}{\mathrm{4}}={sin}\mathrm{2}\theta \\ $$$$\Rightarrow\frac{\mathrm{3}}{\mathrm{4}}=\mathrm{2}{sin}\theta{cos}\theta \\ $$$$\left({sin}\theta−{cos}\theta\right)^{\mathrm{2}} \\ $$$$=\mathrm{1}−\mathrm{2}{sin}\theta{cos}\theta \\ $$$$=\frac{\mathrm{1}}{\mathrm{4}} \\ $$$$\Rightarrow{sin}\theta−{cos}\theta=\pm\frac{\mathrm{1}}{\mathrm{2}} \\ $$

Commented by Tony Lin last updated on 04/Jul/19

(e)  tan3A  =tan(A+2A)  =((tanA+tan2A)/(1−tanAtan2A))  =((tanA+((2tanA)/(1−tan^2 A)))/(1−((2tan^2 A)/(1−tan^2 A))))  =((3tanA−tan^3 A)/(1−3tan^2 A))

$$\left({e}\right) \\ $$$${tan}\mathrm{3}{A} \\ $$$$={tan}\left({A}+\mathrm{2}{A}\right) \\ $$$$=\frac{{tanA}+{tan}\mathrm{2}{A}}{\mathrm{1}−{tanAtan}\mathrm{2}{A}} \\ $$$$=\frac{{tanA}+\frac{\mathrm{2}{tanA}}{\mathrm{1}−{tan}^{\mathrm{2}} {A}}}{\mathrm{1}−\frac{\mathrm{2}{tan}^{\mathrm{2}} {A}}{\mathrm{1}−{tan}^{\mathrm{2}} {A}}} \\ $$$$=\frac{\mathrm{3}{tanA}−{tan}^{\mathrm{3}} {A}}{\mathrm{1}−\mathrm{3}{tan}^{\mathrm{2}} {A}} \\ $$

Commented by Rio Michael last updated on 05/Jul/19

please explain the occurance of    (sinθ−cosθ)^2

$${please}\:{explain}\:{the}\:{occurance}\:{of}\:\: \\ $$$$\left({sin}\theta−{cos}\theta\right)^{\mathrm{2}} \\ $$

Answered by som(math1967) last updated on 04/Jul/19

g(i) ((sin2θ+sin10θ)/(cos2θ+cos10θ))=((2sin6θcos4θ)/(2cos6θcos4θ))=tan6θ  again tan6θ=tan2.3θ=((2tan3θ)/(1−tan^2 3θ))  ii) Again ((2tan3θ)/(1−tan^2 3θ))=1  ⇒tan^2 3θ+2tan3θ=1  ⇒tan^2 3θ+2tan3θ+1=2  ⇒(tan3θ+1)^2 =2  ⇒tan3θ=(√2) −1=tan(π/8)  ∴3θ=nπ+(π/8) ∴θ=(1/3)(nπ+(π/8))

$${g}\left({i}\right)\:\frac{{sin}\mathrm{2}\theta+{sin}\mathrm{10}\theta}{{cos}\mathrm{2}\theta+{cos}\mathrm{10}\theta}=\frac{\mathrm{2}{sin}\mathrm{6}\theta{cos}\mathrm{4}\theta}{\mathrm{2}{cos}\mathrm{6}\theta{cos}\mathrm{4}\theta}={tan}\mathrm{6}\theta \\ $$$${again}\:{tan}\mathrm{6}\theta={tan}\mathrm{2}.\mathrm{3}\theta=\frac{\mathrm{2}{tan}\mathrm{3}\theta}{\mathrm{1}−{tan}^{\mathrm{2}} \mathrm{3}\theta} \\ $$$$\left.{ii}\right)\:{Again}\:\frac{\mathrm{2}{tan}\mathrm{3}\theta}{\mathrm{1}−{tan}^{\mathrm{2}} \mathrm{3}\theta}=\mathrm{1} \\ $$$$\Rightarrow{tan}^{\mathrm{2}} \mathrm{3}\theta+\mathrm{2}{tan}\mathrm{3}\theta=\mathrm{1} \\ $$$$\Rightarrow{tan}^{\mathrm{2}} \mathrm{3}\theta+\mathrm{2}{tan}\mathrm{3}\theta+\mathrm{1}=\mathrm{2} \\ $$$$\Rightarrow\left({tan}\mathrm{3}\theta+\mathrm{1}\right)^{\mathrm{2}} =\mathrm{2} \\ $$$$\Rightarrow{tan}\mathrm{3}\theta=\sqrt{\mathrm{2}}\:−\mathrm{1}={tan}\frac{\pi}{\mathrm{8}} \\ $$$$\therefore\mathrm{3}\theta={n}\pi+\frac{\pi}{\mathrm{8}}\:\therefore\theta=\frac{\mathrm{1}}{\mathrm{3}}\left({n}\pi+\frac{\pi}{\mathrm{8}}\right) \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com