Question and Answers Forum

All Questions      Topic List

Geometry Questions

Previous in All Question      Next in All Question      

Previous in Geometry      Next in Geometry      

Question Number 63438 by ajfour last updated on 04/Jul/19

Commented by ajfour last updated on 04/Jul/19

Determine  a:b:c  if the  inscribed △ABC has constant  perimeter but maximum area.

$${Determine}\:\:{a}:{b}:{c}\:\:{if}\:{the} \\ $$$${inscribed}\:\bigtriangleup{ABC}\:{has}\:{constant} \\ $$$${perimeter}\:{but}\:{maximum}\:{area}. \\ $$

Commented by ajfour last updated on 04/Jul/19

MjS Sir, mrW sir, Tanmay Sir,  please try..

$${MjS}\:{Sir},\:{mrW}\:{sir},\:{Tanmay}\:{Sir}, \\ $$$${please}\:{try}.. \\ $$

Answered by ajfour last updated on 04/Jul/19

A(h,h^2 )  B(h+ccos θ, h^2 +csin θ)  C(h+bcos φ, h^2 +bsin φ)  a+b+c=p             ......(i)  h^2 +csin θ=(h+ccos θ)^2        ...(ii)  ⇒  sin θ=ccos^2 θ+2hcos θ  ⇒  ccos θ=tan θ−2h  h^2 +bsin φ=(h+bcos φ)^2       ....(iii)  ⇒  bcos φ=tan φ−2h  (ccos θ−bcos φ)^2 +(csin θ−bsin φ)^2 =a^2                                                      .....(iv)  ⇒ b^2 +c^2 −a^2 =2bccos (φ−θ)  ⇒ −p^2 −2(b+c)p=2bccos (φ−θ)  −p^2 −2p[((tan θ−2h)/(cos θ))+((tan φ−2h)/(cos φ))]         = 2(tan θ−2h)(tan φ−2h)(1+tan θtan φ)  △=((cd)/2)  d=b(sin φ−cos φtan θ)cos θ  ⇒ △=((bc)/2)(bsin φ−bcos φtan θ)cos θ  △=((bc)/2)sin (φ−θ)  2△=(((tan θ−2h)(tan φ−2h)sin (φ−θ))/(cos θcos φ))  2△=(tan θ−2h)(tan φ−2h)(tan φ−tan θ)  −p^2 −2p[((tan θ−2h)/(cos θ))+((tan φ−2h)/(cos φ))]         = 2(tan θ−2h)(tan φ−2h)(1+tan θtan φ)  Now let  tan θ=t,  tan φ=s  ⇒  −p^2 −2p[(t−2h)(√(1+t^2 ))+(s−2h)(√(1+s^2 )) ]     =2(t−2h)(s−2h)(1+st)  but i′m afraid its not going to yield!

$${A}\left({h},{h}^{\mathrm{2}} \right) \\ $$$${B}\left({h}+{c}\mathrm{cos}\:\theta,\:{h}^{\mathrm{2}} +{c}\mathrm{sin}\:\theta\right) \\ $$$${C}\left({h}+{b}\mathrm{cos}\:\phi,\:{h}^{\mathrm{2}} +{b}\mathrm{sin}\:\phi\right) \\ $$$${a}+{b}+{c}={p}\:\:\:\:\:\:\:\:\:\:\:\:\:......\left({i}\right) \\ $$$${h}^{\mathrm{2}} +{c}\mathrm{sin}\:\theta=\left({h}+{c}\mathrm{cos}\:\theta\right)^{\mathrm{2}} \:\:\:\:\:\:\:...\left({ii}\right) \\ $$$$\Rightarrow\:\:\mathrm{sin}\:\theta={c}\mathrm{cos}\:^{\mathrm{2}} \theta+\mathrm{2}{h}\mathrm{cos}\:\theta \\ $$$$\Rightarrow\:\:{c}\mathrm{cos}\:\theta=\mathrm{tan}\:\theta−\mathrm{2}{h} \\ $$$${h}^{\mathrm{2}} +{b}\mathrm{sin}\:\phi=\left({h}+{b}\mathrm{cos}\:\phi\right)^{\mathrm{2}} \:\:\:\:\:\:....\left({iii}\right) \\ $$$$\Rightarrow\:\:{b}\mathrm{cos}\:\phi=\mathrm{tan}\:\phi−\mathrm{2}{h} \\ $$$$\left({c}\mathrm{cos}\:\theta−{b}\mathrm{cos}\:\phi\right)^{\mathrm{2}} +\left({c}\mathrm{sin}\:\theta−{b}\mathrm{sin}\:\phi\right)^{\mathrm{2}} ={a}^{\mathrm{2}} \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:.....\left({iv}\right) \\ $$$$\Rightarrow\:{b}^{\mathrm{2}} +{c}^{\mathrm{2}} −{a}^{\mathrm{2}} =\mathrm{2}{bc}\mathrm{cos}\:\left(\phi−\theta\right) \\ $$$$\Rightarrow\:−{p}^{\mathrm{2}} −\mathrm{2}\left({b}+{c}\right){p}=\mathrm{2}{bc}\mathrm{cos}\:\left(\phi−\theta\right) \\ $$$$−{p}^{\mathrm{2}} −\mathrm{2}{p}\left[\frac{\mathrm{tan}\:\theta−\mathrm{2}{h}}{\mathrm{cos}\:\theta}+\frac{\mathrm{tan}\:\phi−\mathrm{2}{h}}{\mathrm{cos}\:\phi}\right] \\ $$$$\:\:\:\:\:\:\:=\:\mathrm{2}\left(\mathrm{tan}\:\theta−\mathrm{2}{h}\right)\left(\mathrm{tan}\:\phi−\mathrm{2}{h}\right)\left(\mathrm{1}+\mathrm{tan}\:\theta\mathrm{tan}\:\phi\right) \\ $$$$\bigtriangleup=\frac{{cd}}{\mathrm{2}} \\ $$$${d}={b}\left(\mathrm{sin}\:\phi−\mathrm{cos}\:\phi\mathrm{tan}\:\theta\right)\mathrm{cos}\:\theta \\ $$$$\Rightarrow\:\bigtriangleup=\frac{{bc}}{\mathrm{2}}\left({b}\mathrm{sin}\:\phi−{b}\mathrm{cos}\:\phi\mathrm{tan}\:\theta\right)\mathrm{cos}\:\theta \\ $$$$\bigtriangleup=\frac{{bc}}{\mathrm{2}}\mathrm{sin}\:\left(\phi−\theta\right) \\ $$$$\mathrm{2}\bigtriangleup=\frac{\left(\mathrm{tan}\:\theta−\mathrm{2}{h}\right)\left(\mathrm{tan}\:\phi−\mathrm{2}{h}\right)\mathrm{sin}\:\left(\phi−\theta\right)}{\mathrm{cos}\:\theta\mathrm{cos}\:\phi} \\ $$$$\mathrm{2}\bigtriangleup=\left(\mathrm{tan}\:\theta−\mathrm{2}{h}\right)\left(\mathrm{tan}\:\phi−\mathrm{2}{h}\right)\left(\mathrm{tan}\:\phi−\mathrm{tan}\:\theta\right) \\ $$$$−{p}^{\mathrm{2}} −\mathrm{2}{p}\left[\frac{\mathrm{tan}\:\theta−\mathrm{2}{h}}{\mathrm{cos}\:\theta}+\frac{\mathrm{tan}\:\phi−\mathrm{2}{h}}{\mathrm{cos}\:\phi}\right] \\ $$$$\:\:\:\:\:\:\:=\:\mathrm{2}\left(\mathrm{tan}\:\theta−\mathrm{2}{h}\right)\left(\mathrm{tan}\:\phi−\mathrm{2}{h}\right)\left(\mathrm{1}+\mathrm{tan}\:\theta\mathrm{tan}\:\phi\right) \\ $$$${Now}\:{let}\:\:\mathrm{tan}\:\theta={t},\:\:\mathrm{tan}\:\phi={s} \\ $$$$\Rightarrow\:\:−{p}^{\mathrm{2}} −\mathrm{2}{p}\left[\left({t}−\mathrm{2}{h}\right)\sqrt{\mathrm{1}+{t}^{\mathrm{2}} }+\left({s}−\mathrm{2}{h}\right)\sqrt{\mathrm{1}+{s}^{\mathrm{2}} }\:\right] \\ $$$$\:\:\:=\mathrm{2}\left({t}−\mathrm{2}{h}\right)\left({s}−\mathrm{2}{h}\right)\left(\mathrm{1}+{st}\right) \\ $$$${but}\:{i}'{m}\:{afraid}\:{its}\:{not}\:{going}\:{to}\:{yield}! \\ $$

Commented by ajfour last updated on 04/Jul/19

−p^2 −2p[((tan θ−2h)/(cos θ))+((tan φ−2h)/(cos φ))]         = 2(tan θ−2h)(tan φ−2h)(1+tan θtan φ)                                               ........(I)  2△=(tan θ−2h)(tan φ−2h)(tan φ−tan θ)                                               ........(II)  To find θ,φ such that △ is max.

$$−{p}^{\mathrm{2}} −\mathrm{2}{p}\left[\frac{\mathrm{tan}\:\theta−\mathrm{2}{h}}{\mathrm{cos}\:\theta}+\frac{\mathrm{tan}\:\phi−\mathrm{2}{h}}{\mathrm{cos}\:\phi}\right] \\ $$$$\:\:\:\:\:\:\:=\:\mathrm{2}\left(\mathrm{tan}\:\theta−\mathrm{2}{h}\right)\left(\mathrm{tan}\:\phi−\mathrm{2}{h}\right)\left(\mathrm{1}+\mathrm{tan}\:\theta\mathrm{tan}\:\phi\right) \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:........\left({I}\right) \\ $$$$\mathrm{2}\bigtriangleup=\left(\mathrm{tan}\:\theta−\mathrm{2}{h}\right)\left(\mathrm{tan}\:\phi−\mathrm{2}{h}\right)\left(\mathrm{tan}\:\phi−\mathrm{tan}\:\theta\right) \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:........\left({II}\right) \\ $$$${To}\:{find}\:\theta,\phi\:{such}\:{that}\:\bigtriangleup\:{is}\:{max}. \\ $$

Commented by mr W last updated on 04/Jul/19

a hard question sir...

$${a}\:{hard}\:{question}\:{sir}... \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com