Question and Answers Forum

All Questions      Topic List

Differentiation Questions

Previous in All Question      Next in All Question      

Previous in Differentiation      Next in Differentiation      

Question Number 63473 by Rio Michael last updated on 04/Jul/19

question  lim_(x→0) ((sin(x+A)−sin(A−x))/(2x))

$${question} \\ $$$$\underset{{x}\rightarrow\mathrm{0}} {\mathrm{lim}}\frac{{sin}\left({x}+{A}\right)−{sin}\left({A}−{x}\right)}{\mathrm{2}{x}} \\ $$

Commented by mathmax by abdo last updated on 04/Jul/19

let A(x)=((sin(x+A)−sin(A−x))/(2x)) ⇒  A(x)=((sinx cosA +cosx sinA  +sinx cosA −cosx sinA)/(2x))  =((sinx)/x) cosA  due to lim_(x→0)   ((sinx)/x) =1  we get lim_(x→0)  A(x) =cosA.  let use hospital theorem  lim_(x→0)  A(x) =lim_(x→0)     ((cos(x+A) +cos(x−A))/2) =((2cosA)/2) =cosA.

$${let}\:{A}\left({x}\right)=\frac{{sin}\left({x}+{A}\right)−{sin}\left({A}−{x}\right)}{\mathrm{2}{x}}\:\Rightarrow \\ $$$${A}\left({x}\right)=\frac{{sinx}\:{cosA}\:+{cosx}\:{sinA}\:\:+{sinx}\:{cosA}\:−{cosx}\:{sinA}}{\mathrm{2}{x}} \\ $$$$=\frac{{sinx}}{{x}}\:{cosA}\:\:{due}\:{to}\:{lim}_{{x}\rightarrow\mathrm{0}} \:\:\frac{{sinx}}{{x}}\:=\mathrm{1}\:\:{we}\:{get}\:{lim}_{{x}\rightarrow\mathrm{0}} \:{A}\left({x}\right)\:={cosA}. \\ $$$${let}\:{use}\:{hospital}\:{theorem} \\ $$$${lim}_{{x}\rightarrow\mathrm{0}} \:{A}\left({x}\right)\:={lim}_{{x}\rightarrow\mathrm{0}} \:\:\:\:\frac{{cos}\left({x}+{A}\right)\:+{cos}\left({x}−{A}\right)}{\mathrm{2}}\:=\frac{\mathrm{2}{cosA}}{\mathrm{2}}\:={cosA}. \\ $$

Commented by Rio Michael last updated on 04/Jul/19

yeah.

$${yeah}. \\ $$

Commented by Rio Michael last updated on 04/Jul/19

i used the idea of small angles  for small angles sinθ=θ

$${i}\:{used}\:{the}\:{idea}\:{of}\:{small}\:{angles} \\ $$$${for}\:{small}\:{angles}\:{sin}\theta=\theta \\ $$

Commented by mathmax by abdo last updated on 04/Jul/19

you will get the same result.

$${you}\:{will}\:{get}\:{the}\:{same}\:{result}. \\ $$

Commented by Rio Michael last updated on 05/Jul/19

by small angles,    A(x)= ((sinxcosA+cosxsinA+sinxcosA−cosxsinA)/(2x))            = ((2sinxcosA)/(2x))  ⇒ lim_(x→0) ((2sinxcosA)/(2x)) for small angles sinx=x  ⇒ lim_(x→0) ((2xcosA)/(2x))= cosA.

$${by}\:{small}\:{angles},\: \\ $$$$\:{A}\left({x}\right)=\:\frac{{sinxcosA}+{cosxsinA}+{sinxcosA}−{cosxsinA}}{\mathrm{2}{x}} \\ $$$$\:\:\:\:\:\:\:\:\:\:=\:\frac{\mathrm{2}{sinxcosA}}{\mathrm{2}{x}} \\ $$$$\Rightarrow\underset{{x}\rightarrow\mathrm{0}} {\:{lim}}\frac{\mathrm{2}{sinxcosA}}{\mathrm{2}{x}}\:{for}\:{small}\:{angles}\:{sinx}={x} \\ $$$$\Rightarrow\:\underset{{x}\rightarrow\mathrm{0}} {{lim}}\frac{\mathrm{2}{xcosA}}{\mathrm{2}{x}}=\:{cosA}. \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com