Question and Answers Forum

All Questions      Topic List

Others Questions

Previous in All Question      Next in All Question      

Previous in Others      Next in Others      

Question Number 63507 by mathmax by abdo last updated on 05/Jul/19

let U_n =∫_(1/n) ^1 ((√(x^2 +x+1)) −(√(x^2 −x+1)))dx   (n>0)  1)calculate lim_(n→+∞)   U_n   2)  find nature of  Σ U_n

$${let}\:{U}_{{n}} =\int_{\frac{\mathrm{1}}{{n}}} ^{\mathrm{1}} \left(\sqrt{{x}^{\mathrm{2}} +{x}+\mathrm{1}}\:−\sqrt{{x}^{\mathrm{2}} −{x}+\mathrm{1}}\right){dx}\:\:\:\left({n}>\mathrm{0}\right) \\ $$ $$\left.\mathrm{1}\right){calculate}\:{lim}_{{n}\rightarrow+\infty} \:\:{U}_{{n}} \\ $$ $$\left.\mathrm{2}\right)\:\:{find}\:{nature}\:{of}\:\:\Sigma\:{U}_{{n}} \\ $$

Answered by MJS last updated on 05/Jul/19

lim_(n→+∞) U_n =∫_0 ^1 ((√(x^2 +x+1))−(√(x^2 −x+1)))dx  ∫(√(x^2 ±x+1))dx=(1/2)∫(√((2x±1)^2 +3))dx=       [t=sinh^(−1)  ((2x±1)/(√3)) → dx=(√(x^2 ±x+1))dt]  =(3/4)∫(cosh^2  t)dt=(3/8)∫(1+cosh 2t)dt=  =(3/8)t+(3/(16))sinh 2t  ∫((√(x^2 +x+1))−(√(x^2 −x+1)))dx=  =(3/8)(sinh^(−1)  ((2x+1)/(√3)) −sinh^(−1)  ((2x−1)/(√3)))+(1/4)((2x+1)(√(x^2 +x+1))−(2x−1)(√(x^2 −x+1)))+C  lim_(n→+∞) U_n =∫_0 ^1 ((√(x^2 +x+1))−(√(x^2 −x+1)))dx=  =−((3−3(√3))/4)+(3/8)sinh^(−1)  (√3) −(9/8)sinh^(−1)  ((√3)/3) ≈.424928  [=−((3−3(√3))/4)+(3/8)ln (3+2(√3)) −(3/4)ln 3]  ΣU_n =+∞

$$\underset{{n}\rightarrow+\infty} {\mathrm{lim}}{U}_{{n}} =\underset{\mathrm{0}} {\overset{\mathrm{1}} {\int}}\left(\sqrt{{x}^{\mathrm{2}} +{x}+\mathrm{1}}−\sqrt{{x}^{\mathrm{2}} −{x}+\mathrm{1}}\right){dx} \\ $$ $$\int\sqrt{{x}^{\mathrm{2}} \pm{x}+\mathrm{1}}{dx}=\frac{\mathrm{1}}{\mathrm{2}}\int\sqrt{\left(\mathrm{2}{x}\pm\mathrm{1}\right)^{\mathrm{2}} +\mathrm{3}}{dx}= \\ $$ $$\:\:\:\:\:\left[{t}=\mathrm{sinh}^{−\mathrm{1}} \:\frac{\mathrm{2}{x}\pm\mathrm{1}}{\sqrt{\mathrm{3}}}\:\rightarrow\:{dx}=\sqrt{{x}^{\mathrm{2}} \pm{x}+\mathrm{1}}{dt}\right] \\ $$ $$=\frac{\mathrm{3}}{\mathrm{4}}\int\left(\mathrm{cosh}^{\mathrm{2}} \:{t}\right){dt}=\frac{\mathrm{3}}{\mathrm{8}}\int\left(\mathrm{1}+\mathrm{cosh}\:\mathrm{2}{t}\right){dt}= \\ $$ $$=\frac{\mathrm{3}}{\mathrm{8}}{t}+\frac{\mathrm{3}}{\mathrm{16}}\mathrm{sinh}\:\mathrm{2}{t} \\ $$ $$\int\left(\sqrt{{x}^{\mathrm{2}} +{x}+\mathrm{1}}−\sqrt{{x}^{\mathrm{2}} −{x}+\mathrm{1}}\right){dx}= \\ $$ $$=\frac{\mathrm{3}}{\mathrm{8}}\left(\mathrm{sinh}^{−\mathrm{1}} \:\frac{\mathrm{2}{x}+\mathrm{1}}{\sqrt{\mathrm{3}}}\:−\mathrm{sinh}^{−\mathrm{1}} \:\frac{\mathrm{2}{x}−\mathrm{1}}{\sqrt{\mathrm{3}}}\right)+\frac{\mathrm{1}}{\mathrm{4}}\left(\left(\mathrm{2}{x}+\mathrm{1}\right)\sqrt{{x}^{\mathrm{2}} +{x}+\mathrm{1}}−\left(\mathrm{2}{x}−\mathrm{1}\right)\sqrt{{x}^{\mathrm{2}} −{x}+\mathrm{1}}\right)+{C} \\ $$ $$\underset{{n}\rightarrow+\infty} {\mathrm{lim}}{U}_{{n}} =\underset{\mathrm{0}} {\overset{\mathrm{1}} {\int}}\left(\sqrt{{x}^{\mathrm{2}} +{x}+\mathrm{1}}−\sqrt{{x}^{\mathrm{2}} −{x}+\mathrm{1}}\right){dx}= \\ $$ $$=−\frac{\mathrm{3}−\mathrm{3}\sqrt{\mathrm{3}}}{\mathrm{4}}+\frac{\mathrm{3}}{\mathrm{8}}\mathrm{sinh}^{−\mathrm{1}} \:\sqrt{\mathrm{3}}\:−\frac{\mathrm{9}}{\mathrm{8}}\mathrm{sinh}^{−\mathrm{1}} \:\frac{\sqrt{\mathrm{3}}}{\mathrm{3}}\:\approx.\mathrm{424928} \\ $$ $$\left[=−\frac{\mathrm{3}−\mathrm{3}\sqrt{\mathrm{3}}}{\mathrm{4}}+\frac{\mathrm{3}}{\mathrm{8}}\mathrm{ln}\:\left(\mathrm{3}+\mathrm{2}\sqrt{\mathrm{3}}\right)\:−\frac{\mathrm{3}}{\mathrm{4}}\mathrm{ln}\:\mathrm{3}\right] \\ $$ $$\Sigma{U}_{{n}} =+\infty \\ $$

Commented bymathmax by abdo last updated on 05/Jul/19

thank you sir mjs for those hard works.

$${thank}\:{you}\:{sir}\:{mjs}\:{for}\:{those}\:{hard}\:{works}. \\ $$

Commented byMJS last updated on 05/Jul/19

you′re welcome. you know I love integrals...

$$\mathrm{you}'\mathrm{re}\:\mathrm{welcome}.\:\mathrm{you}\:\mathrm{know}\:\mathrm{I}\:\mathrm{love}\:\mathrm{integrals}... \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com