Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 63519 by Rio Michael last updated on 05/Jul/19

consider the general definite intergral     I_n =∫_0 ^(π/2) sin^n xdx  a) prove that for n≥2, nI_n =(n−1)I_(n−2) .  b) Find the values of  i)∫_0 ^(π/2) sin^5 dx   ii) ∫_0 ^(π/2) sin^6 dx

$${consider}\:{the}\:{general}\:{definite}\:{intergral}\:\: \\ $$$$\:{I}_{{n}} =\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{2}}} {sin}^{{n}} {xdx} \\ $$$$\left.{a}\right)\:{prove}\:{that}\:{for}\:{n}\geqslant\mathrm{2},\:{nI}_{{n}} =\left({n}−\mathrm{1}\right){I}_{{n}−\mathrm{2}} . \\ $$$$\left.{b}\left.\right)\left.\:{Find}\:{the}\:{values}\:{of}\:\:\boldsymbol{{i}}\right)\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{2}}} {sin}^{\mathrm{5}} {dx}\:\:\:\boldsymbol{{ii}}\right)\:\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{2}}} {sin}^{\mathrm{6}} {dx} \\ $$

Commented by Prithwish sen last updated on 05/Jul/19

I_n =∫_0 ^(π/2) sin^(n−1) x sinxdx,  using by parts  =[−sin^(n−1) xcosx]_0 ^(π/2)  + (n−1)∫_0 ^(π/2) sin^(n−2) x(1−sin^2 x)^ dx  = (n−1)I_(n−2) −(n−1)I_n   nI_n  = (n−1)I_(n−2)    proved  ∫_0 ^(π/2) sin^5 x dx = (((5−1))/5)I_3  = (4/5).(((3−1))/3) I_(3−2) = (4/5).(2/3).I   =(8/(15 )) ∫_0 ^(π/2) sinx dx = −(8/(15)) (cosx)_0 ^(π/2)  = (8/(15))  similarly you can deduce (ii)

$$\mathrm{I}_{\mathrm{n}} =\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{2}}} \mathrm{sin}^{\mathrm{n}−\mathrm{1}} \mathrm{x}\:\mathrm{sinxdx},\:\:\mathrm{using}\:\mathrm{by}\:\mathrm{parts} \\ $$$$=\left[−\mathrm{sin}^{\mathrm{n}−\mathrm{1}} \mathrm{xcosx}\right]_{\mathrm{0}} ^{\frac{\pi}{\mathrm{2}}} \:+\:\left(\mathrm{n}−\mathrm{1}\right)\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{2}}} \mathrm{sin}^{\mathrm{n}−\mathrm{2}} \mathrm{x}\left(\mathrm{1}−\mathrm{sin}^{\mathrm{2}} \mathrm{x}\overset{} {\right)}\mathrm{dx} \\ $$$$=\:\left(\mathrm{n}−\mathrm{1}\right)\mathrm{I}_{\mathrm{n}−\mathrm{2}} −\left(\mathrm{n}−\mathrm{1}\right)\mathrm{I}_{\mathrm{n}} \\ $$$$\mathrm{nI}_{\mathrm{n}} \:=\:\left(\mathrm{n}−\mathrm{1}\right)\mathrm{I}_{\mathrm{n}−\mathrm{2}} \:\:\:\boldsymbol{\mathrm{proved}} \\ $$$$\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{2}}} \mathrm{sin}^{\mathrm{5}} \mathrm{x}\:\mathrm{dx}\:=\:\frac{\left(\mathrm{5}−\mathrm{1}\right)}{\mathrm{5}}\mathrm{I}_{\mathrm{3}} \:=\:\frac{\mathrm{4}}{\mathrm{5}}.\frac{\left(\mathrm{3}−\mathrm{1}\right)}{\mathrm{3}}\:\mathrm{I}_{\mathrm{3}−\mathrm{2}} =\:\frac{\mathrm{4}}{\mathrm{5}}.\frac{\mathrm{2}}{\mathrm{3}}.\mathrm{I} \\ $$$$\:=\frac{\mathrm{8}}{\mathrm{15}\:}\:\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{2}}} \mathrm{sinx}\:\mathrm{dx}\:=\:−\frac{\mathrm{8}}{\mathrm{15}}\:\left(\mathrm{cosx}\right)_{\mathrm{0}} ^{\frac{\pi}{\mathrm{2}}} \:=\:\frac{\mathrm{8}}{\mathrm{15}} \\ $$$$\mathrm{similarly}\:\mathrm{you}\:\mathrm{can}\:\mathrm{deduce}\:\left(\mathrm{ii}\right) \\ $$$$ \\ $$

Commented by Rio Michael last updated on 05/Jul/19

so ii)  becomes  ((5π)/(32))?

$$\left.{so}\:\boldsymbol{{ii}}\right)\:\:{becomes}\:\:\frac{\mathrm{5}\pi}{\mathrm{32}}? \\ $$

Commented by Prithwish sen last updated on 05/Jul/19

yes

$$\mathrm{yes} \\ $$

Commented by Rio Michael last updated on 05/Jul/19

okay sir thanks

$${okay}\:{sir}\:{thanks}\: \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com