Question and Answers Forum

All Questions      Topic List

Limits Questions

Previous in All Question      Next in All Question      

Previous in Limits      Next in Limits      

Question Number 63579 by Tawa1 last updated on 05/Jul/19

 lim_(x→0)   ((2^(sec(x))  − 2^(cos(x)) )/x^2 )

$$\:\underset{{x}\rightarrow\mathrm{0}} {\mathrm{lim}}\:\:\frac{\mathrm{2}^{\mathrm{sec}\left(\mathrm{x}\right)} \:−\:\mathrm{2}^{\mathrm{cos}\left(\mathrm{x}\right)} }{\mathrm{x}^{\mathrm{2}} } \\ $$

Commented by Prithwish sen last updated on 05/Jul/19

∵ form (0/(0 )) applying L′Hopital  lim_(x→0)  ((secx tanx 2^(secx) ln2 + sinx 2^(cosx) ln2)/(2x))  = (1/2) [ lim_(x→0)  (((tanx)/x) ) . secx 2^(secx) ln2 + lim_(x→0)  (((sinx)/x)).2^(cosx) ln2 ]  =2ln2 please check.

$$\because\:\mathrm{form}\:\frac{\mathrm{0}}{\mathrm{0}\:}\:\mathrm{applying}\:\mathrm{L}'\mathrm{Hopital} \\ $$$$\mathrm{li}\underset{\mathrm{x}\rightarrow\mathrm{0}} {\mathrm{m}}\:\frac{\mathrm{secx}\:\mathrm{tanx}\:\mathrm{2}^{\mathrm{secx}} \mathrm{ln2}\:+\:\mathrm{sinx}\:\mathrm{2}^{\mathrm{cosx}} \mathrm{ln2}}{\mathrm{2x}} \\ $$$$=\:\frac{\mathrm{1}}{\mathrm{2}}\:\left[\:\mathrm{li}\underset{\mathrm{x}\rightarrow\mathrm{0}} {\mathrm{m}}\:\left(\frac{\mathrm{tanx}}{\mathrm{x}}\:\right)\:.\:\mathrm{secx}\:\mathrm{2}^{\mathrm{secx}} \mathrm{ln2}\:+\:\mathrm{li}\underset{\mathrm{x}\rightarrow\mathrm{0}} {\mathrm{m}}\:\left(\frac{\mathrm{sinx}}{\mathrm{x}}\right).\mathrm{2}^{\mathrm{cosx}} \mathrm{ln2}\:\right] \\ $$$$=\mathrm{2ln2}\:\mathrm{please}\:\mathrm{check}. \\ $$

Commented by mathmax by abdo last updated on 05/Jul/19

let use hospital theorem  let A(x)=((2^(1/(cosx)) −2^(cosx) )/x^2 )  u(x)=2^(1/(cosx)) −2^(cosx)    and v(x)=x^2    we have  lim_(x→0) u(x)=lim_(x→0) v(x)=0  u(x)=e^((ln(2))/(cosx))  −e^(ln(2)cosx)  ⇒u^′ (x) =(((ln(2))/(cosx)))^′   e^((ln(2))/(cosx))  +ln(2)sinx e^(ln(2)cosx)   =((ln(2)sinx)/(cos^2 x)) e^((ln(2))/(cosx))  + ln(2)sinx e^(ln(2) cosx)  =ln(2)sinx{ (e^((ln(2))/(cosx)) /(cos^2 x)) +e^(ln(2)cosx) } ⇒  u^((2)) (x)=ln(2)cosx{ (e^((ln(2))/(cosx)) /(cos^2 x)) +e^(ln(2)cosx) } +ln(2)sinx {.......}^((1))  ⇒  lim_(x→0) u^((2)) (x) = ln(2){2 +2}=4ln(2)  also we have  v^′ (x)=2x  and v^((2)) (x)=2 ⇒ lim_(x→0) v^((2)) (x)=2 ⇒lim_(x→0)  A(x) =((4ln(2))/2) =2ln(2).

$${let}\:{use}\:{hospital}\:{theorem}\:\:{let}\:{A}\left({x}\right)=\frac{\mathrm{2}^{\frac{\mathrm{1}}{{cosx}}} −\mathrm{2}^{{cosx}} }{{x}^{\mathrm{2}} } \\ $$$${u}\left({x}\right)=\mathrm{2}^{\frac{\mathrm{1}}{{cosx}}} −\mathrm{2}^{{cosx}} \:\:\:{and}\:{v}\left({x}\right)={x}^{\mathrm{2}} \:\:\:{we}\:{have}\:\:{lim}_{{x}\rightarrow\mathrm{0}} {u}\left({x}\right)={lim}_{{x}\rightarrow\mathrm{0}} {v}\left({x}\right)=\mathrm{0} \\ $$$${u}\left({x}\right)={e}^{\frac{{ln}\left(\mathrm{2}\right)}{{cosx}}} \:−{e}^{{ln}\left(\mathrm{2}\right){cosx}} \:\Rightarrow{u}^{'} \left({x}\right)\:=\left(\frac{{ln}\left(\mathrm{2}\right)}{{cosx}}\right)^{'} \:\:{e}^{\frac{{ln}\left(\mathrm{2}\right)}{{cosx}}} \:+{ln}\left(\mathrm{2}\right){sinx}\:{e}^{{ln}\left(\mathrm{2}\right){cosx}} \\ $$$$=\frac{{ln}\left(\mathrm{2}\right){sinx}}{{cos}^{\mathrm{2}} {x}}\:{e}^{\frac{{ln}\left(\mathrm{2}\right)}{{cosx}}} \:+\:{ln}\left(\mathrm{2}\right){sinx}\:{e}^{{ln}\left(\mathrm{2}\right)\:{cosx}} \:={ln}\left(\mathrm{2}\right){sinx}\left\{\:\frac{{e}^{\frac{{ln}\left(\mathrm{2}\right)}{{cosx}}} }{{cos}^{\mathrm{2}} {x}}\:+{e}^{{ln}\left(\mathrm{2}\right){cosx}} \right\}\:\Rightarrow \\ $$$${u}^{\left(\mathrm{2}\right)} \left({x}\right)={ln}\left(\mathrm{2}\right){cosx}\left\{\:\frac{{e}^{\frac{{ln}\left(\mathrm{2}\right)}{{cosx}}} }{{cos}^{\mathrm{2}} {x}}\:+{e}^{{ln}\left(\mathrm{2}\right){cosx}} \right\}\:+{ln}\left(\mathrm{2}\right){sinx}\:\left\{.......\right\}^{\left(\mathrm{1}\right)} \:\Rightarrow \\ $$$${lim}_{{x}\rightarrow\mathrm{0}} {u}^{\left(\mathrm{2}\right)} \left({x}\right)\:=\:{ln}\left(\mathrm{2}\right)\left\{\mathrm{2}\:+\mathrm{2}\right\}=\mathrm{4}{ln}\left(\mathrm{2}\right)\:\:{also}\:{we}\:{have} \\ $$$${v}^{'} \left({x}\right)=\mathrm{2}{x}\:\:{and}\:{v}^{\left(\mathrm{2}\right)} \left({x}\right)=\mathrm{2}\:\Rightarrow\:{lim}_{{x}\rightarrow\mathrm{0}} {v}^{\left(\mathrm{2}\right)} \left({x}\right)=\mathrm{2}\:\Rightarrow{lim}_{{x}\rightarrow\mathrm{0}} \:{A}\left({x}\right)\:=\frac{\mathrm{4}{ln}\left(\mathrm{2}\right)}{\mathrm{2}}\:=\mathrm{2}{ln}\left(\mathrm{2}\right). \\ $$

Commented by Tawa1 last updated on 05/Jul/19

God bless you sir

$$\mathrm{God}\:\mathrm{bless}\:\mathrm{you}\:\mathrm{sir} \\ $$

Commented by mathmax by abdo last updated on 05/Jul/19

you are welcome.

$${you}\:{are}\:{welcome}. \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com