All Questions Topic List
None Questions
Previous in All Question Next in All Question
Previous in None Next in None
Question Number 636 by 123456 last updated on 17/Feb/15
iff,garefunctionsofR→Rnotconstantsuchforall(x,y)∈R2{f(x+y)=f(x)f(y)−g(x)g(y)g(x+y)=f(x)g(y)+g(x)f(y)iff′(0)=0thenproofosdisproofthat∀x∈R,[f(x)]2+[g(x)]2=1
Commented by prakash jain last updated on 16/Feb/15
g(x+y)=f(x)g(y)−g(x)f(y)g(x+x)=f(x)g(x)−g(x)f(x)g(2x)=0?doyoumeang(x+y)=f(x)g(y)+g(x)f(y)?Ifg(x+y)=f(x)g(y)−g(x)f(y)g(2x)=f(x)g(x)−g(x)f(y)=0Contradictsassumptionf(x),g(x)arenotconstant.
Commented by prakash jain last updated on 17/Feb/15
Squaringandadding[f(x+y)]2+[g(x+y)]2=([f(x)]2+[g(x)]2)([f(y)]2+[g(y)]2)Ifu(x)=[f(x)]2+[g(x)]2u(x+y)=u(x)u(y)⇒u(x)=ekx[f(x)]2+[g(x)]2=ekx
Answered by prakash jain last updated on 17/Feb/15
Fromcomments[f(x)]2+[g(x)]2=ekxf(x+x)=[f(x)]2−[g(x)]2f(2x)=2[f(x)]2−ekxDifferentingbothsides2f′(2x)=4f(x)f′(x)−kekxputx=02f′(0)=4f(0)f′(0)−kGivenf′(0)=00=0−k⇒k=0Hence[f(x)]2+[g(x)]2=1
Terms of Service
Privacy Policy
Contact: info@tinkutara.com