Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 63667 by mathmax by abdo last updated on 07/Jul/19

1) calculate ∫_0 ^(2π)    (dt/(cost +x sint))   wih x from R.  2) calculate  ∫_0 ^(2π)   ((sint)/((cost +xsint)^2 ))dt  3) find[the value of ∫_0 ^(2π)   (dt/(cos(2t)+2sin(2t)))

1)calculate02πdtcost+xsintwihxfromR.2)calculate02πsint(cost+xsint)2dt3)find[thevalueof02πdtcos(2t)+2sin(2t)

Commented by mathmax by abdo last updated on 07/Jul/19

1) changement z =e^(it)  give   ∫_0 ^(2π)   (dt/(cost +xsint)) =∫_(∣z∣=1)      (dz/(iz{((z+z^(−1) )/2)+x((z−z^(−1) )/(2i))}))  =∫_(∣z∣=1)    (dz/(((iz^2 +i)/2)+((xz^2 −x)/2))) =∫_(∣z∣=1)    ((2dz)/((x+i)z^2 −x+i))  =(2/(x+i)) ∫_(∣z∣=1)     (dz/(z^2 −((x−i)/(x+i))))      we have ((x−i)/(x+i)) =(((√(x^2 +1))e^(iarctan(−(1/x))) )/((√(x^2  +1))e^(iarctan((1/x))) ))  =e^(−2i arctan((1/x)))     (  we suppose x≠0) ⇒(√((x−i)/(x+i)))=e^(−iarctan((1/x)))   let w(z) =(1/(z^2 −((x−i)/(x+i)))) ⇒W(z)=(1/((z−e^(−iarctan((1/x))) )(z+e^(−iarctan((1/x))) )))  residus theorem give   ∫_(∣z∣=1)   W(z)dz =2iπ{Res(W,e^(−iarctan((1/x))) )+Res(W,−e^(−iarctan((1/x))) )  Res(W,e^(−iarctan((1/x))) )=(1/(2e^(−iarctan((1/x))) )) =(1/2) e^(iarctan((1/x)))   Res(W,−e^(−iarctan((1/x))) ) =(1/(−2e^(−iarctan((1/x))) )) =−(1/2)e^(iarctan((1/x)))  ⇒  the residus are opposites ⇒∫_(∣z∣=1) W(z)dz =0 ⇒  ∀x ≠0    ∫_0 ^(2π)    (dt/(cost +isint)) =0  if x=0 we get ∫_0 ^(2π)   (dt/(cost)) =∫_0 ^π  (dt/(cost)) +∫_π ^(2π)  (dt/(cost))  ∫_π ^(2π)  (dt/(cost)) =_(t =π +u)     ∫_0 ^π   (du/(−cosu)) =−∫_0 ^π  (du/(cosu)) ⇒  ∫_0 ^(2π)  (dt/(cost)) =0

1)changementz=eitgive02πdtcost+xsint=z∣=1dziz{z+z12+xzz12i}=z∣=1dziz2+i2+xz2x2=z∣=12dz(x+i)z2x+i=2x+iz∣=1dzz2xix+iwehavexix+i=x2+1eiarctan(1x)x2+1eiarctan(1x)=e2iarctan(1x)(wesupposex0)xix+i=eiarctan(1x)letw(z)=1z2xix+iW(z)=1(zeiarctan(1x))(z+eiarctan(1x))residustheoremgivez∣=1W(z)dz=2iπ{Res(W,eiarctan(1x))+Res(W,eiarctan(1x))Res(W,eiarctan(1x))=12eiarctan(1x)=12eiarctan(1x)Res(W,eiarctan(1x))=12eiarctan(1x)=12eiarctan(1x)theresidusareoppositesz∣=1W(z)dz=0x002πdtcost+isint=0ifx=0weget02πdtcost=0πdtcost+π2πdtcostπ2πdtcost=t=π+u0πducosu=0πducosu02πdtcost=0

Commented by mathmax by abdo last updated on 07/Jul/19

2) let f(x)=∫_0 ^(2π)   (dt/(cost +xsint)) ⇒f^′ (x) =−∫_0 ^(2π) ((sint)/((cost +xsint)^2 ))dt =0  (because f(x)=0)⇒∫_0 ^(2π)  ((sint)/((cost +xsint)^2 ))dt =0

2)letf(x)=02πdtcost+xsintf(x)=02πsint(cost+xsint)2dt=0(becausef(x)=0)02πsint(cost+xsint)2dt=0

Commented by mathmax by abdo last updated on 07/Jul/19

3)∫_0 ^(2π)  (dt/(cos(2t)+2 sin(2t))) =_(2t =u)   ∫_0 ^(4π)  (du/(2(cosu +2sinu)))  =(1/2)∫_0 ^(2π)   (du/(cosu +2sinu )) +∫_(2π) ^(4π)   (du/(cosu +2sinu)) =0 because  2π is period.

3)02πdtcos(2t)+2sin(2t)=2t=u04πdu2(cosu+2sinu)=1202πducosu+2sinu+2π4πducosu+2sinu=0because2πisperiod.

Terms of Service

Privacy Policy

Contact: info@tinkutara.com