Question and Answers Forum

All Questions      Topic List

Limits Questions

Previous in All Question      Next in All Question      

Previous in Limits      Next in Limits      

Question Number 63710 by aliesam last updated on 07/Jul/19

Commented by mathmax by abdo last updated on 08/Jul/19

let A_n =∫_0 ^(1/n) n^2  x^(x+1)  ex ⇒A_n =∫_0 ^(1/n)  n^2 e^((x+1)ln(x)) dx by parts  u^′ =n^2  and v=e^((x+1)ln(x))  ⇒u=n^2 x and v^′ =(ln(x)+((x+1)/x))e^((x+1)ln(x))   ⇒A_n =[n^2 x x^(x+1) ]_0 ^(1/n)  −∫_0 ^(1/n)  n^2 x (ln(x)+1+(1/x))x^(x+1) dx  =n((1/n))^((1/n)+1)   −n^2  ∫_0 ^(1/n)  (xlnx+x+1)x^(x+1) dx  =(n/n^((1/n)+1) ) −n^2  ∫_0 ^(1/n)  x^(x+2) ln(x) −n^2 ∫_0 ^(1/n)  x^(x+2) dx−n^2  ∫_0 ^(1/n)  x^(x+1) dx ⇒  2A_n =(n/n^((1/n)+1) ) −n^2  ∫_0 ^(1/n)  x^(x+2) ln(x)dx −n^2  ∫_0 ^(1/n)  x^(x+2) dx we have   lim_(n→+∞)  (n/n^((1/n)+1) ) =1  rest to prove that   lim_(n→+∞)   n^2  {∫_0 ^(1/n)  x^(x+2) ln(x)dx +∫_0 ^(1/n)  x^(x+2) dx} =0 ⇒  lim_(n→+∞)  A_n =(1/2)  ...be continued...

$${let}\:{A}_{{n}} =\int_{\mathrm{0}} ^{\frac{\mathrm{1}}{{n}}} {n}^{\mathrm{2}} \:{x}^{{x}+\mathrm{1}} \:{ex}\:\Rightarrow{A}_{{n}} =\int_{\mathrm{0}} ^{\frac{\mathrm{1}}{{n}}} \:{n}^{\mathrm{2}} {e}^{\left({x}+\mathrm{1}\right){ln}\left({x}\right)} {dx}\:{by}\:{parts} \\ $$$${u}^{'} ={n}^{\mathrm{2}} \:{and}\:{v}={e}^{\left({x}+\mathrm{1}\right){ln}\left({x}\right)} \:\Rightarrow{u}={n}^{\mathrm{2}} {x}\:{and}\:{v}^{'} =\left({ln}\left({x}\right)+\frac{{x}+\mathrm{1}}{{x}}\right){e}^{\left({x}+\mathrm{1}\right){ln}\left({x}\right)} \\ $$$$\Rightarrow{A}_{{n}} =\left[{n}^{\mathrm{2}} {x}\:{x}^{{x}+\mathrm{1}} \right]_{\mathrm{0}} ^{\frac{\mathrm{1}}{{n}}} \:−\int_{\mathrm{0}} ^{\frac{\mathrm{1}}{{n}}} \:{n}^{\mathrm{2}} {x}\:\left({ln}\left({x}\right)+\mathrm{1}+\frac{\mathrm{1}}{{x}}\right){x}^{{x}+\mathrm{1}} {dx} \\ $$$$={n}\left(\frac{\mathrm{1}}{{n}}\right)^{\frac{\mathrm{1}}{{n}}+\mathrm{1}} \:\:−{n}^{\mathrm{2}} \:\int_{\mathrm{0}} ^{\frac{\mathrm{1}}{{n}}} \:\left({xlnx}+{x}+\mathrm{1}\right){x}^{{x}+\mathrm{1}} {dx} \\ $$$$=\frac{{n}}{{n}^{\frac{\mathrm{1}}{{n}}+\mathrm{1}} }\:−{n}^{\mathrm{2}} \:\int_{\mathrm{0}} ^{\frac{\mathrm{1}}{{n}}} \:{x}^{{x}+\mathrm{2}} {ln}\left({x}\right)\:−{n}^{\mathrm{2}} \int_{\mathrm{0}} ^{\frac{\mathrm{1}}{{n}}} \:{x}^{{x}+\mathrm{2}} {dx}−{n}^{\mathrm{2}} \:\int_{\mathrm{0}} ^{\frac{\mathrm{1}}{{n}}} \:{x}^{{x}+\mathrm{1}} {dx}\:\Rightarrow \\ $$$$\mathrm{2}{A}_{{n}} =\frac{{n}}{{n}^{\frac{\mathrm{1}}{{n}}+\mathrm{1}} }\:−{n}^{\mathrm{2}} \:\int_{\mathrm{0}} ^{\frac{\mathrm{1}}{{n}}} \:{x}^{{x}+\mathrm{2}} {ln}\left({x}\right){dx}\:−{n}^{\mathrm{2}} \:\int_{\mathrm{0}} ^{\frac{\mathrm{1}}{{n}}} \:{x}^{{x}+\mathrm{2}} {dx}\:{we}\:{have}\: \\ $$$${lim}_{{n}\rightarrow+\infty} \:\frac{{n}}{{n}^{\frac{\mathrm{1}}{{n}}+\mathrm{1}} }\:=\mathrm{1}\:\:{rest}\:{to}\:{prove}\:{that}\: \\ $$$${lim}_{{n}\rightarrow+\infty} \:\:{n}^{\mathrm{2}} \:\left\{\int_{\mathrm{0}} ^{\frac{\mathrm{1}}{{n}}} \:{x}^{{x}+\mathrm{2}} {ln}\left({x}\right){dx}\:+\int_{\mathrm{0}} ^{\frac{\mathrm{1}}{{n}}} \:{x}^{{x}+\mathrm{2}} {dx}\right\}\:=\mathrm{0}\:\Rightarrow \\ $$$${lim}_{{n}\rightarrow+\infty} \:{A}_{{n}} =\frac{\mathrm{1}}{\mathrm{2}}\:\:...{be}\:{continued}... \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com