Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 63711 by mathmax by abdo last updated on 07/Jul/19

calculate ∫_0 ^π    (dx/((√3)cosx +(√2)sinx))

$${calculate}\:\int_{\mathrm{0}} ^{\pi} \:\:\:\frac{{dx}}{\sqrt{\mathrm{3}}{cosx}\:+\sqrt{\mathrm{2}}{sinx}} \\ $$

Commented by mathmax by abdo last updated on 08/Jul/19

let A =∫_0 ^π   (dx/((√3)cosx +(√2)sinx))  changement tan((x/2))=t give  A =∫_0 ^∞    ((2dt)/((1+t^2 ){(√3)((1−t^2 )/(1+t^2 )) +(√2)((2t)/(1+t^2 ))}))  =∫_0 ^∞   ((2dt)/((√3)(1−t^2 )+2(√2)t)) =∫_0 ^∞   ((2dt)/(−(√3)t^2 +2(√2)t +(√3))) =∫_0 ^∞   ((−2dt)/((√3)t^2 −2(√2)t−(√3)))  Δ^′ =(−(√2))^2 +3 =5 ⇒t_1 =(((√2)+(√5))/(√3)) and t_2 =(((√2)−(√5))/(√3)) ⇒  A =((−2)/(√3))∫_0 ^∞      (dt/((t−t_1 )(t−t_2 ))) =((−2)/((√3)(t_1 −t_2 ))) ∫_0 ^∞  {(1/(t−t_1 )) −(1/(t−t_2 ))}dt  =((−2)/((√3)((2(√5))/(√3)))) ∫_0 ^∞  {(1/(t−t_1 )) −(1/(t−t_2 ))}dt=−(1/(√5))[ln∣((t−t_1 )/(t−t_2 ))∣]_0 ^(+∞)   =(1/(√5))ln∣(t_1 /t_2 )∣ =(1/(√5))ln∣(((√2)+(√5))/((√2)−(√5)))∣ =(1/(√5))ln((((√5)+(√2))/((√5)−(√2)))).

$${let}\:{A}\:=\int_{\mathrm{0}} ^{\pi} \:\:\frac{{dx}}{\sqrt{\mathrm{3}}{cosx}\:+\sqrt{\mathrm{2}}{sinx}}\:\:{changement}\:{tan}\left(\frac{{x}}{\mathrm{2}}\right)={t}\:{give} \\ $$$${A}\:=\int_{\mathrm{0}} ^{\infty} \:\:\:\frac{\mathrm{2}{dt}}{\left(\mathrm{1}+{t}^{\mathrm{2}} \right)\left\{\sqrt{\mathrm{3}}\frac{\mathrm{1}−{t}^{\mathrm{2}} }{\mathrm{1}+{t}^{\mathrm{2}} }\:+\sqrt{\mathrm{2}}\frac{\mathrm{2}{t}}{\mathrm{1}+{t}^{\mathrm{2}} }\right\}} \\ $$$$=\int_{\mathrm{0}} ^{\infty} \:\:\frac{\mathrm{2}{dt}}{\sqrt{\mathrm{3}}\left(\mathrm{1}−{t}^{\mathrm{2}} \right)+\mathrm{2}\sqrt{\mathrm{2}}{t}}\:=\int_{\mathrm{0}} ^{\infty} \:\:\frac{\mathrm{2}{dt}}{−\sqrt{\mathrm{3}}{t}^{\mathrm{2}} +\mathrm{2}\sqrt{\mathrm{2}}{t}\:+\sqrt{\mathrm{3}}}\:=\int_{\mathrm{0}} ^{\infty} \:\:\frac{−\mathrm{2}{dt}}{\sqrt{\mathrm{3}}{t}^{\mathrm{2}} −\mathrm{2}\sqrt{\mathrm{2}}{t}−\sqrt{\mathrm{3}}} \\ $$$$\Delta^{'} =\left(−\sqrt{\mathrm{2}}\right)^{\mathrm{2}} +\mathrm{3}\:=\mathrm{5}\:\Rightarrow{t}_{\mathrm{1}} =\frac{\sqrt{\mathrm{2}}+\sqrt{\mathrm{5}}}{\sqrt{\mathrm{3}}}\:{and}\:{t}_{\mathrm{2}} =\frac{\sqrt{\mathrm{2}}−\sqrt{\mathrm{5}}}{\sqrt{\mathrm{3}}}\:\Rightarrow \\ $$$${A}\:=\frac{−\mathrm{2}}{\sqrt{\mathrm{3}}}\int_{\mathrm{0}} ^{\infty} \:\:\:\:\:\frac{{dt}}{\left({t}−{t}_{\mathrm{1}} \right)\left({t}−{t}_{\mathrm{2}} \right)}\:=\frac{−\mathrm{2}}{\sqrt{\mathrm{3}}\left({t}_{\mathrm{1}} −{t}_{\mathrm{2}} \right)}\:\int_{\mathrm{0}} ^{\infty} \:\left\{\frac{\mathrm{1}}{{t}−{t}_{\mathrm{1}} }\:−\frac{\mathrm{1}}{{t}−{t}_{\mathrm{2}} }\right\}{dt} \\ $$$$=\frac{−\mathrm{2}}{\sqrt{\mathrm{3}}\frac{\mathrm{2}\sqrt{\mathrm{5}}}{\sqrt{\mathrm{3}}}}\:\int_{\mathrm{0}} ^{\infty} \:\left\{\frac{\mathrm{1}}{{t}−{t}_{\mathrm{1}} }\:−\frac{\mathrm{1}}{{t}−{t}_{\mathrm{2}} }\right\}{dt}=−\frac{\mathrm{1}}{\sqrt{\mathrm{5}}}\left[{ln}\mid\frac{{t}−{t}_{\mathrm{1}} }{{t}−{t}_{\mathrm{2}} }\mid\right]_{\mathrm{0}} ^{+\infty} \\ $$$$=\frac{\mathrm{1}}{\sqrt{\mathrm{5}}}{ln}\mid\frac{{t}_{\mathrm{1}} }{{t}_{\mathrm{2}} }\mid\:=\frac{\mathrm{1}}{\sqrt{\mathrm{5}}}{ln}\mid\frac{\sqrt{\mathrm{2}}+\sqrt{\mathrm{5}}}{\sqrt{\mathrm{2}}−\sqrt{\mathrm{5}}}\mid\:=\frac{\mathrm{1}}{\sqrt{\mathrm{5}}}{ln}\left(\frac{\sqrt{\mathrm{5}}+\sqrt{\mathrm{2}}}{\sqrt{\mathrm{5}}−\sqrt{\mathrm{2}}}\right). \\ $$

Answered by MJS last updated on 07/Jul/19

=((√5)/5)∫(dx/(sin (x+arctan ((√6)/2))))  now it′s easy again...

$$=\frac{\sqrt{\mathrm{5}}}{\mathrm{5}}\int\frac{{dx}}{\mathrm{sin}\:\left({x}+\mathrm{arctan}\:\frac{\sqrt{\mathrm{6}}}{\mathrm{2}}\right)} \\ $$$$\mathrm{now}\:\mathrm{it}'\mathrm{s}\:\mathrm{easy}\:\mathrm{again}... \\ $$

Commented by mathmax by abdo last updated on 07/Jul/19

thank you sir.

$${thank}\:{you}\:{sir}. \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com