Question and Answers Forum

All Questions      Topic List

None Questions

Previous in All Question      Next in All Question      

Previous in None      Next in None      

Question Number 63769 by aliesam last updated on 08/Jul/19

Commented by mathmax by abdo last updated on 09/Jul/19

let prove by recurence n=0    A_0 =0 is divisible by 6  let suppose A_n =n^3  +5n is divisible by 6 ⇒  A_(n+1)  =(n+1)^3  +5(n+1)  =n^3  +3n^2  +3n +1 +5n +5 =n^3  +5n +3n^2  +3n +6  n^3 +5n =6k( hypothesis of recurence)  3n^2  +3n +6 =3{n^2  +n +2} =3{2k^′  +2}=6{k^′  +1} ⇒  A_(n+1) =6k +6{k^′  +1} =6{k+k^′  +1} ⇒A_(n+1)  is divisible by 6  the result is ptoved.

$${let}\:{prove}\:{by}\:{recurence}\:{n}=\mathrm{0}\:\:\:\:{A}_{\mathrm{0}} =\mathrm{0}\:{is}\:{divisible}\:{by}\:\mathrm{6} \\ $$$${let}\:{suppose}\:{A}_{{n}} ={n}^{\mathrm{3}} \:+\mathrm{5}{n}\:{is}\:{divisible}\:{by}\:\mathrm{6}\:\Rightarrow \\ $$$${A}_{{n}+\mathrm{1}} \:=\left({n}+\mathrm{1}\right)^{\mathrm{3}} \:+\mathrm{5}\left({n}+\mathrm{1}\right) \\ $$$$={n}^{\mathrm{3}} \:+\mathrm{3}{n}^{\mathrm{2}} \:+\mathrm{3}{n}\:+\mathrm{1}\:+\mathrm{5}{n}\:+\mathrm{5}\:={n}^{\mathrm{3}} \:+\mathrm{5}{n}\:+\mathrm{3}{n}^{\mathrm{2}} \:+\mathrm{3}{n}\:+\mathrm{6} \\ $$$${n}^{\mathrm{3}} +\mathrm{5}{n}\:=\mathrm{6}{k}\left(\:{hypothesis}\:{of}\:{recurence}\right) \\ $$$$\mathrm{3}{n}^{\mathrm{2}} \:+\mathrm{3}{n}\:+\mathrm{6}\:=\mathrm{3}\left\{{n}^{\mathrm{2}} \:+{n}\:+\mathrm{2}\right\}\:=\mathrm{3}\left\{\mathrm{2}{k}^{'} \:+\mathrm{2}\right\}=\mathrm{6}\left\{{k}^{'} \:+\mathrm{1}\right\}\:\Rightarrow \\ $$$${A}_{{n}+\mathrm{1}} =\mathrm{6}{k}\:+\mathrm{6}\left\{{k}^{'} \:+\mathrm{1}\right\}\:=\mathrm{6}\left\{{k}+{k}^{'} \:+\mathrm{1}\right\}\:\Rightarrow{A}_{{n}+\mathrm{1}} \:{is}\:{divisible}\:{by}\:\mathrm{6} \\ $$$${the}\:{result}\:{is}\:{ptoved}. \\ $$

Answered by MJS last updated on 08/Jul/19

6∣n^3 +5n ⇔ 2∣n^3 +5n ∧ 3∣n^3 +5n  2∣n^3 +5n  1. n=2k  (2k)^3 +5×2k=2×(4k^3 +5k)  2. n=2k+1  (2k+1)^3 +5×(2k+1)=2×(4k^3 +6k^2 +8k+1)  ⇒ 2∣n^3 +nn    3∣n^3 +5n  n^3 +5n=n(n^2 +5)  3∣n∨3∣n^2 +5  1. n=3k ⇒ 3∣n  2. n=3k+1  (3k+1)^2 +5=3×(3k^2 +3k+2)  3. n=3k+2  (3k+2)^2 +5=3×(3k^2 +4k+3)  ⇒ 3∣n^3 +5n    ⇒6∣n^3 +5n

$$\mathrm{6}\mid{n}^{\mathrm{3}} +\mathrm{5}{n}\:\Leftrightarrow\:\mathrm{2}\mid{n}^{\mathrm{3}} +\mathrm{5}{n}\:\wedge\:\mathrm{3}\mid{n}^{\mathrm{3}} +\mathrm{5}{n} \\ $$$$\mathrm{2}\mid{n}^{\mathrm{3}} +\mathrm{5}{n} \\ $$$$\mathrm{1}.\:{n}=\mathrm{2}{k} \\ $$$$\left(\mathrm{2}{k}\right)^{\mathrm{3}} +\mathrm{5}×\mathrm{2}{k}=\mathrm{2}×\left(\mathrm{4}{k}^{\mathrm{3}} +\mathrm{5}{k}\right) \\ $$$$\mathrm{2}.\:{n}=\mathrm{2}{k}+\mathrm{1} \\ $$$$\left(\mathrm{2}{k}+\mathrm{1}\right)^{\mathrm{3}} +\mathrm{5}×\left(\mathrm{2}{k}+\mathrm{1}\right)=\mathrm{2}×\left(\mathrm{4}{k}^{\mathrm{3}} +\mathrm{6}{k}^{\mathrm{2}} +\mathrm{8}{k}+\mathrm{1}\right) \\ $$$$\Rightarrow\:\mathrm{2}\mid{n}^{\mathrm{3}} +{nn} \\ $$$$ \\ $$$$\mathrm{3}\mid{n}^{\mathrm{3}} +\mathrm{5}{n} \\ $$$${n}^{\mathrm{3}} +\mathrm{5}{n}={n}\left({n}^{\mathrm{2}} +\mathrm{5}\right) \\ $$$$\mathrm{3}\mid{n}\vee\mathrm{3}\mid{n}^{\mathrm{2}} +\mathrm{5} \\ $$$$\mathrm{1}.\:{n}=\mathrm{3}{k}\:\Rightarrow\:\mathrm{3}\mid{n} \\ $$$$\mathrm{2}.\:{n}=\mathrm{3}{k}+\mathrm{1} \\ $$$$\left(\mathrm{3}{k}+\mathrm{1}\right)^{\mathrm{2}} +\mathrm{5}=\mathrm{3}×\left(\mathrm{3}{k}^{\mathrm{2}} +\mathrm{3}{k}+\mathrm{2}\right) \\ $$$$\mathrm{3}.\:{n}=\mathrm{3}{k}+\mathrm{2} \\ $$$$\left(\mathrm{3}{k}+\mathrm{2}\right)^{\mathrm{2}} +\mathrm{5}=\mathrm{3}×\left(\mathrm{3}{k}^{\mathrm{2}} +\mathrm{4}{k}+\mathrm{3}\right) \\ $$$$\Rightarrow\:\mathrm{3}\mid{n}^{\mathrm{3}} +\mathrm{5}{n} \\ $$$$ \\ $$$$\Rightarrow\mathrm{6}\mid{n}^{\mathrm{3}} +\mathrm{5}{n} \\ $$

Commented by aliesam last updated on 09/Jul/19

god bless you

$${god}\:{bless}\:{you} \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com