Question and Answers Forum

All Questions      Topic List

Algebra Questions

Previous in All Question      Next in All Question      

Previous in Algebra      Next in Algebra      

Question Number 63784 by MJS last updated on 09/Jul/19

question 63639 again  prove:  ∀z∈C: ∣z+1∣+∣z^2 +z+1∣+∣z^3 +1∣≥1

$$\mathrm{question}\:\mathrm{63639}\:\mathrm{again} \\ $$$$\mathrm{prove}: \\ $$$$\forall{z}\in\mathbb{C}:\:\mid{z}+\mathrm{1}\mid+\mid{z}^{\mathrm{2}} +{z}+\mathrm{1}\mid+\mid{z}^{\mathrm{3}} +\mathrm{1}\mid\geqslant\mathrm{1} \\ $$

Commented by Prithwish sen last updated on 09/Jul/19

1=∣1+z +1 + z^3 − (z^3  + z^2 ) − (z^2  + z + 1)∣  ≤ ∣1+z∣ + ∣1+z^3 ∣ + ∣z^2 ∣∣1+z∣ +∣z^2 +z + 1∣ ( ∵ ∣z_1 −z_2 ∣ ≤ ∣z_1 ∣ +∣z_2 ∣  ≤ ∣1+z∣ +∣1+z^3 ∣ + ∣ z^2 +z+1∣   = ∣1+z∣ + ∣z^2 +z+1∣ + ∣z^3 +1∣ (∵ addition  of complex numbers follow commutative law.  Hence proved.

$$\mathrm{1}=\mid\mathrm{1}+\mathrm{z}\:+\mathrm{1}\:+\:\mathrm{z}^{\mathrm{3}} −\:\left(\mathrm{z}^{\mathrm{3}} \:+\:\mathrm{z}^{\mathrm{2}} \right)\:−\:\left(\mathrm{z}^{\mathrm{2}} \:+\:\mathrm{z}\:+\:\mathrm{1}\right)\mid \\ $$$$\leqslant\:\mid\mathrm{1}+\mathrm{z}\mid\:+\:\mid\mathrm{1}+\mathrm{z}^{\mathrm{3}} \mid\:+\:\mid\mathrm{z}^{\mathrm{2}} \mid\mid\mathrm{1}+\mathrm{z}\mid\:+\mid\mathrm{z}^{\mathrm{2}} +\mathrm{z}\:+\:\mathrm{1}\mid\:\left(\:\because\:\mid\mathrm{z}_{\mathrm{1}} −\mathrm{z}_{\mathrm{2}} \mid\:\leqslant\:\mid\mathrm{z}_{\mathrm{1}} \mid\:+\mid\mathrm{z}_{\mathrm{2}} \mid\right. \\ $$$$\leqslant\:\mid\mathrm{1}+\mathrm{z}\mid\:+\mid\mathrm{1}+\mathrm{z}^{\mathrm{3}} \mid\:+\:\mid\:\mathrm{z}^{\mathrm{2}} +\mathrm{z}+\mathrm{1}\mid\: \\ $$$$=\:\mid\mathrm{1}+\mathrm{z}\mid\:+\:\mid\mathrm{z}^{\mathrm{2}} +\mathrm{z}+\mathrm{1}\mid\:+\:\mid\mathrm{z}^{\mathrm{3}} +\mathrm{1}\mid\:\left(\because\:\mathrm{addition}\right. \\ $$$$\mathrm{of}\:\mathrm{complex}\:\mathrm{numbers}\:\mathrm{follow}\:\mathrm{commutative}\:\mathrm{law}. \\ $$$$\boldsymbol{\mathrm{Hence}}\:\boldsymbol{\mathrm{proved}}. \\ $$

Commented by Prithwish sen last updated on 09/Jul/19

please check it sir.

$$\mathrm{please}\:\mathrm{check}\:\mathrm{it}\:\mathrm{sir}. \\ $$

Commented by Prithwish sen last updated on 09/Jul/19

Is it ok sir ?

$$\mathrm{Is}\:\mathrm{it}\:\mathrm{ok}\:\mathrm{sir}\:? \\ $$

Commented by mr W last updated on 09/Jul/19

how can you say:  ∣1+z∣ + ∣1+z^3 ∣ + ∣z^2 ∣∣1+z∣ +∣z^2 +z + 1∣   ≤ ∣1+z∣ +∣1+z^3 ∣ + ∣ z^2 +z+1∣   ?

$${how}\:{can}\:{you}\:{say}: \\ $$$$\mid\mathrm{1}+\mathrm{z}\mid\:+\:\mid\mathrm{1}+\mathrm{z}^{\mathrm{3}} \mid\:+\:\mid\mathrm{z}^{\mathrm{2}} \mid\mid\mathrm{1}+\mathrm{z}\mid\:+\mid\mathrm{z}^{\mathrm{2}} +\mathrm{z}\:+\:\mathrm{1}\mid\: \\ $$$$\leqslant\:\mid\mathrm{1}+\mathrm{z}\mid\:+\mid\mathrm{1}+\mathrm{z}^{\mathrm{3}} \mid\:+\:\mid\:\mathrm{z}^{\mathrm{2}} +\mathrm{z}+\mathrm{1}\mid\: \\ $$$$? \\ $$

Commented by MJS last updated on 10/Jul/19

so how can we solve it?  for z=−1  0+1+0≥1  for z=−(1/2)±((√3)/2)i  1+0+2≥1  for z=(1/2)±((√3)/2)i  (√3)+2+0≥1  is it enough to show that for z close to −1  the sum of the absolutes is rising in every  direction?  we can put x=−1+re^(iθ)  with −π≤θ<π and  choose any small value for r>0 ⇒  ∣z+1∣+∣z^2 +z+1∣+∣z^3 +1∣=f(θ)=  =r+(√(r^4 −2r^3 cos θ −(1−4cos^2  θ)r^2 −2rcos θ +1))+r(√(r^4 −6r^3 cos θ +3(1+4cos^2  θ)r^2 −18rcos θ +9))  (df/dθ)=rsin θ ×[some complicated term which has  no zeros for small values of r]  ⇒ our function has minima/maxima at  θ=−π∨θ=0  ⇒  { ((f(−π)=r+∣r^2 +r+1∣+r∣r^2 +3r+3∣)),((f(0)=r+∣r^2 −r+1∣+r∣r^2 −3r+3∣)) :}  in both cases the minimum is at r=0 because  r cannot be negative  ⇒ z=−1 seems to be the absolute minimum  with ∣z+1∣+∣z^2 +z+1∣+∣z^3 +1∣=1

$$\mathrm{so}\:\mathrm{how}\:\mathrm{can}\:\mathrm{we}\:\mathrm{solve}\:\mathrm{it}? \\ $$$$\mathrm{for}\:{z}=−\mathrm{1} \\ $$$$\mathrm{0}+\mathrm{1}+\mathrm{0}\geqslant\mathrm{1} \\ $$$$\mathrm{for}\:{z}=−\frac{\mathrm{1}}{\mathrm{2}}\pm\frac{\sqrt{\mathrm{3}}}{\mathrm{2}}\mathrm{i} \\ $$$$\mathrm{1}+\mathrm{0}+\mathrm{2}\geqslant\mathrm{1} \\ $$$$\mathrm{for}\:{z}=\frac{\mathrm{1}}{\mathrm{2}}\pm\frac{\sqrt{\mathrm{3}}}{\mathrm{2}}\mathrm{i} \\ $$$$\sqrt{\mathrm{3}}+\mathrm{2}+\mathrm{0}\geqslant\mathrm{1} \\ $$$$\mathrm{is}\:\mathrm{it}\:\mathrm{enough}\:\mathrm{to}\:\mathrm{show}\:\mathrm{that}\:\mathrm{for}\:{z}\:\mathrm{close}\:\mathrm{to}\:−\mathrm{1} \\ $$$$\mathrm{the}\:\mathrm{sum}\:\mathrm{of}\:\mathrm{the}\:\mathrm{absolutes}\:\mathrm{is}\:\mathrm{rising}\:\mathrm{in}\:\mathrm{every} \\ $$$$\mathrm{direction}? \\ $$$$\mathrm{we}\:\mathrm{can}\:\mathrm{put}\:{x}=−\mathrm{1}+{r}\mathrm{e}^{\mathrm{i}\theta} \:\mathrm{with}\:−\pi\leqslant\theta<\pi\:\mathrm{and} \\ $$$$\mathrm{choose}\:\mathrm{any}\:\mathrm{small}\:\mathrm{value}\:\mathrm{for}\:{r}>\mathrm{0}\:\Rightarrow \\ $$$$\mid{z}+\mathrm{1}\mid+\mid{z}^{\mathrm{2}} +{z}+\mathrm{1}\mid+\mid{z}^{\mathrm{3}} +\mathrm{1}\mid={f}\left(\theta\right)= \\ $$$$={r}+\sqrt{{r}^{\mathrm{4}} −\mathrm{2}{r}^{\mathrm{3}} \mathrm{cos}\:\theta\:−\left(\mathrm{1}−\mathrm{4cos}^{\mathrm{2}} \:\theta\right){r}^{\mathrm{2}} −\mathrm{2}{r}\mathrm{cos}\:\theta\:+\mathrm{1}}+{r}\sqrt{{r}^{\mathrm{4}} −\mathrm{6}{r}^{\mathrm{3}} \mathrm{cos}\:\theta\:+\mathrm{3}\left(\mathrm{1}+\mathrm{4cos}^{\mathrm{2}} \:\theta\right){r}^{\mathrm{2}} −\mathrm{18}{r}\mathrm{cos}\:\theta\:+\mathrm{9}} \\ $$$$\frac{{df}}{{d}\theta}={r}\mathrm{sin}\:\theta\:×\left[{some}\:{complicated}\:{term}\:{which}\:{has}\right. \\ $$$$\left.{no}\:{zeros}\:{for}\:{small}\:{values}\:{of}\:{r}\right] \\ $$$$\Rightarrow\:\mathrm{our}\:\mathrm{function}\:\mathrm{has}\:\mathrm{minima}/\mathrm{maxima}\:\mathrm{at} \\ $$$$\theta=−\pi\vee\theta=\mathrm{0} \\ $$$$\Rightarrow\:\begin{cases}{{f}\left(−\pi\right)={r}+\mid{r}^{\mathrm{2}} +{r}+\mathrm{1}\mid+{r}\mid{r}^{\mathrm{2}} +\mathrm{3}{r}+\mathrm{3}\mid}\\{{f}\left(\mathrm{0}\right)={r}+\mid{r}^{\mathrm{2}} −{r}+\mathrm{1}\mid+{r}\mid{r}^{\mathrm{2}} −\mathrm{3}{r}+\mathrm{3}\mid}\end{cases} \\ $$$$\mathrm{in}\:\mathrm{both}\:\mathrm{cases}\:\mathrm{the}\:\mathrm{minimum}\:\mathrm{is}\:\mathrm{at}\:{r}=\mathrm{0}\:\mathrm{because} \\ $$$${r}\:\mathrm{cannot}\:\mathrm{be}\:\mathrm{negative} \\ $$$$\Rightarrow\:{z}=−\mathrm{1}\:\mathrm{seems}\:\mathrm{to}\:\mathrm{be}\:\mathrm{the}\:\mathrm{absolute}\:\mathrm{minimum} \\ $$$$\mathrm{with}\:\mid{z}+\mathrm{1}\mid+\mid{z}^{\mathrm{2}} +{z}+\mathrm{1}\mid+\mid{z}^{\mathrm{3}} +\mathrm{1}\mid=\mathrm{1} \\ $$

Commented by Prithwish sen last updated on 10/Jul/19

Sir is′nt the ansolute value indicate the  distance between z and the origin. If so then  why it can′t be positive all the time ?

$$\mathrm{Sir}\:\mathrm{is}'\mathrm{nt}\:\mathrm{the}\:\mathrm{ansolute}\:\mathrm{value}\:\mathrm{indicate}\:\mathrm{the} \\ $$$$\mathrm{distance}\:\mathrm{between}\:\mathrm{z}\:\mathrm{and}\:\mathrm{the}\:\mathrm{origin}.\:\mathrm{If}\:\mathrm{so}\:\mathrm{then} \\ $$$$\mathrm{why}\:\mathrm{it}\:\mathrm{can}'\mathrm{t}\:\mathrm{be}\:\mathrm{positive}\:\mathrm{all}\:\mathrm{the}\:\mathrm{time}\:?\: \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com