Question and Answers Forum

All Questions      Topic List

Algebra Questions

Previous in All Question      Next in All Question      

Previous in Algebra      Next in Algebra      

Question Number 63803 by aliesam last updated on 09/Jul/19

Commented by Prithwish sen last updated on 09/Jul/19

(x+iy)^3  = (((1+(√7)i)^2 )/(1−(√7)i)) = (((1+(√7)i)^3 )/8)   ∴ x = (1/2) and y = ((√7)/2)

$$\left(\mathrm{x}+\mathrm{iy}\right)^{\mathrm{3}} \:=\:\frac{\left(\mathrm{1}+\sqrt{\mathrm{7}}\mathrm{i}\right)^{\mathrm{2}} }{\mathrm{1}−\sqrt{\mathrm{7}}\mathrm{i}}\:=\:\frac{\left(\mathrm{1}+\sqrt{\mathrm{7}}\mathrm{i}\right)^{\mathrm{3}} }{\mathrm{8}} \\ $$$$\:\therefore\:\mathrm{x}\:=\:\frac{\mathrm{1}}{\mathrm{2}}\:\mathrm{and}\:\mathrm{y}\:=\:\frac{\sqrt{\mathrm{7}}}{\mathrm{2}} \\ $$

Commented by mathmax by abdo last updated on 09/Jul/19

let Z =x+iy  we get Z^3 =((−6+2(√7)i)/(1−(√7)i)) let solve this (e)  ∣−6+2(√7)i∣ =(√(36+28))=(√(64))=8  ∣1−(√7)i∣ =(√(1+7))=(√8) ⇒∣((−6+2(√(i7)))/(1−(√7)i))∣ =(8/(√8)) =2(√2)  −6+2(√7)i =8(((−6)/8) +((2(√7)i)/8)) =8(−(3/4) +((√7)/4)i) =8 e^(iarctan(−((√7)/3)))   1−(√7)i =2(√2)( (1/(2(√2))) −((√7)/(2(√2)))i) =2(√2) e^(iarctan(−(√7)))  ⇒  ((−6+2(√7)i)/(1−(√7)i)) =2(√2)e^(i( arctan(((−(√7))/3))+arctan((√7)))) =2(√2) e^(i(arctan((√7))−arctan(((√7)/3))))   let Z =ρ e^(iθ)    (e) ⇒ρ^3  e^(i3θ)  =2(√2)e^(i(arctan(√7)−arctan(((√7)/3))) )  ⇒  ρ =(2(√2))^(1/3)   and  3θ =arctan((√7))−arctan(((√7)/3)) +2kπ ⇒  ⇒θ_k =((arctan((√7))−arctan(((√7)/3)))/3) +((2kπ)/3)   and k ∈[[0,2]]  the roots are Z_k =e^(iθ_k )  =x_k +iy_k   Z_0 =e^(iθ_0 ) =x_0 +iy_0   Z_1 =e^(iθ_1 )  =x_1 +iy_1   Z_2 =e^(iθ_2 )  =x_2 +iy_2 ...

$${let}\:{Z}\:={x}+{iy}\:\:{we}\:{get}\:{Z}^{\mathrm{3}} =\frac{−\mathrm{6}+\mathrm{2}\sqrt{\mathrm{7}}{i}}{\mathrm{1}−\sqrt{\mathrm{7}}{i}}\:{let}\:{solve}\:{this}\:\left({e}\right) \\ $$$$\mid−\mathrm{6}+\mathrm{2}\sqrt{\mathrm{7}}{i}\mid\:=\sqrt{\mathrm{36}+\mathrm{28}}=\sqrt{\mathrm{64}}=\mathrm{8} \\ $$$$\mid\mathrm{1}−\sqrt{\mathrm{7}}{i}\mid\:=\sqrt{\mathrm{1}+\mathrm{7}}=\sqrt{\mathrm{8}}\:\Rightarrow\mid\frac{−\mathrm{6}+\mathrm{2}\sqrt{{i}\mathrm{7}}}{\mathrm{1}−\sqrt{\mathrm{7}}{i}}\mid\:=\frac{\mathrm{8}}{\sqrt{\mathrm{8}}}\:=\mathrm{2}\sqrt{\mathrm{2}} \\ $$$$−\mathrm{6}+\mathrm{2}\sqrt{\mathrm{7}}{i}\:=\mathrm{8}\left(\frac{−\mathrm{6}}{\mathrm{8}}\:+\frac{\mathrm{2}\sqrt{\mathrm{7}}{i}}{\mathrm{8}}\right)\:=\mathrm{8}\left(−\frac{\mathrm{3}}{\mathrm{4}}\:+\frac{\sqrt{\mathrm{7}}}{\mathrm{4}}{i}\right)\:=\mathrm{8}\:{e}^{{iarctan}\left(−\frac{\sqrt{\mathrm{7}}}{\mathrm{3}}\right)} \\ $$$$\mathrm{1}−\sqrt{\mathrm{7}}{i}\:=\mathrm{2}\sqrt{\mathrm{2}}\left(\:\frac{\mathrm{1}}{\mathrm{2}\sqrt{\mathrm{2}}}\:−\frac{\sqrt{\mathrm{7}}}{\mathrm{2}\sqrt{\mathrm{2}}}{i}\right)\:=\mathrm{2}\sqrt{\mathrm{2}}\:{e}^{{iarctan}\left(−\sqrt{\mathrm{7}}\right)} \:\Rightarrow \\ $$$$\frac{−\mathrm{6}+\mathrm{2}\sqrt{\mathrm{7}}{i}}{\mathrm{1}−\sqrt{\mathrm{7}}{i}}\:=\mathrm{2}\sqrt{\mathrm{2}}{e}^{{i}\left(\:{arctan}\left(\frac{−\sqrt{\mathrm{7}}}{\mathrm{3}}\right)+{arctan}\left(\sqrt{\mathrm{7}}\right)\right)} =\mathrm{2}\sqrt{\mathrm{2}}\:{e}^{{i}\left({arctan}\left(\sqrt{\mathrm{7}}\right)−{arctan}\left(\frac{\sqrt{\mathrm{7}}}{\mathrm{3}}\right)\right)} \\ $$$${let}\:{Z}\:=\rho\:{e}^{{i}\theta} \:\:\:\left({e}\right)\:\Rightarrow\rho^{\mathrm{3}} \:{e}^{{i}\mathrm{3}\theta} \:=\mathrm{2}\sqrt{\mathrm{2}}{e}^{{i}\left({arctan}\sqrt{\mathrm{7}}−{arctan}\left(\frac{\sqrt{\mathrm{7}}}{\mathrm{3}}\right)\right)\:} \:\Rightarrow \\ $$$$\rho\:=\left(\mathrm{2}\sqrt{\mathrm{2}}\right)^{\frac{\mathrm{1}}{\mathrm{3}}} \:\:{and}\:\:\mathrm{3}\theta\:={arctan}\left(\sqrt{\mathrm{7}}\right)−{arctan}\left(\frac{\sqrt{\mathrm{7}}}{\mathrm{3}}\right)\:+\mathrm{2}{k}\pi\:\Rightarrow \\ $$$$\Rightarrow\theta_{{k}} =\frac{{arctan}\left(\sqrt{\mathrm{7}}\right)−{arctan}\left(\frac{\sqrt{\mathrm{7}}}{\mathrm{3}}\right)}{\mathrm{3}}\:+\frac{\mathrm{2}{k}\pi}{\mathrm{3}}\:\:\:{and}\:{k}\:\in\left[\left[\mathrm{0},\mathrm{2}\right]\right] \\ $$$${the}\:{roots}\:{are}\:{Z}_{{k}} ={e}^{{i}\theta_{{k}} } \:={x}_{{k}} +{iy}_{{k}} \\ $$$${Z}_{\mathrm{0}} ={e}^{{i}\theta_{\mathrm{0}} } ={x}_{\mathrm{0}} +{iy}_{\mathrm{0}} \\ $$$${Z}_{\mathrm{1}} ={e}^{{i}\theta_{\mathrm{1}} } \:={x}_{\mathrm{1}} +{iy}_{\mathrm{1}} \\ $$$${Z}_{\mathrm{2}} ={e}^{{i}\theta_{\mathrm{2}} } \:={x}_{\mathrm{2}} +{iy}_{\mathrm{2}} ... \\ $$

Commented by mathmax by abdo last updated on 09/Jul/19

sorry Z_k =ρ e^(iθ_k )  ⇒  Z_0 =ρe^(iθ_0 )  =x_0 +iy_0   Z_1 =ρ e^(iθ_1 )  =x_1  +iy_1

$${sorry}\:{Z}_{{k}} =\rho\:{e}^{{i}\theta_{{k}} } \:\Rightarrow \\ $$$${Z}_{\mathrm{0}} =\rho{e}^{{i}\theta_{\mathrm{0}} } \:={x}_{\mathrm{0}} +{iy}_{\mathrm{0}} \\ $$$${Z}_{\mathrm{1}} =\rho\:{e}^{{i}\theta_{\mathrm{1}} } \:={x}_{\mathrm{1}} \:+{iy}_{\mathrm{1}} \\ $$

Commented by mathmax by abdo last updated on 09/Jul/19

Z_2 =ρ e^(iθ_2 )  =x_2 +iy_2   the reels (x_i )and (y_i )are detremined.

$${Z}_{\mathrm{2}} =\rho\:{e}^{{i}\theta_{\mathrm{2}} } \:={x}_{\mathrm{2}} +{iy}_{\mathrm{2}} \\ $$$${the}\:{reels}\:\left({x}_{{i}} \right){and}\:\left({y}_{{i}} \right){are}\:{detremined}. \\ $$

Answered by MJS last updated on 09/Jul/19

((−6+2(√7)i)/(1−(√7)i))=−(5/2)−((√7)/2)i  in this case we have good luck because  ((1/2)+((√7)/2)i)^3 =−(5/2)−((√7)/2)i  ⇒ z_1 =(1/2)+((√7)/2)i  z^3 +(5/2)+((√7)/2)i=0  (z−(1/2)−((√7)/2)i)(z^2 +((1/2)+((√7)/2)i)z−(3/2)+((√7)/2)i)=0  ⇒ z_(2, 3) =±((1+(√(21)))/4)−(((√7)−(√3))/4)i

$$\frac{−\mathrm{6}+\mathrm{2}\sqrt{\mathrm{7}}\mathrm{i}}{\mathrm{1}−\sqrt{\mathrm{7}}\mathrm{i}}=−\frac{\mathrm{5}}{\mathrm{2}}−\frac{\sqrt{\mathrm{7}}}{\mathrm{2}}\mathrm{i} \\ $$$$\mathrm{in}\:\mathrm{this}\:\mathrm{case}\:\mathrm{we}\:\mathrm{have}\:\mathrm{good}\:\mathrm{luck}\:\mathrm{because} \\ $$$$\left(\frac{\mathrm{1}}{\mathrm{2}}+\frac{\sqrt{\mathrm{7}}}{\mathrm{2}}\mathrm{i}\right)^{\mathrm{3}} =−\frac{\mathrm{5}}{\mathrm{2}}−\frac{\sqrt{\mathrm{7}}}{\mathrm{2}}\mathrm{i} \\ $$$$\Rightarrow\:{z}_{\mathrm{1}} =\frac{\mathrm{1}}{\mathrm{2}}+\frac{\sqrt{\mathrm{7}}}{\mathrm{2}}\mathrm{i} \\ $$$${z}^{\mathrm{3}} +\frac{\mathrm{5}}{\mathrm{2}}+\frac{\sqrt{\mathrm{7}}}{\mathrm{2}}\mathrm{i}=\mathrm{0} \\ $$$$\left({z}−\frac{\mathrm{1}}{\mathrm{2}}−\frac{\sqrt{\mathrm{7}}}{\mathrm{2}}\mathrm{i}\right)\left({z}^{\mathrm{2}} +\left(\frac{\mathrm{1}}{\mathrm{2}}+\frac{\sqrt{\mathrm{7}}}{\mathrm{2}}\mathrm{i}\right){z}−\frac{\mathrm{3}}{\mathrm{2}}+\frac{\sqrt{\mathrm{7}}}{\mathrm{2}}\mathrm{i}\right)=\mathrm{0} \\ $$$$\Rightarrow\:{z}_{\mathrm{2},\:\mathrm{3}} =\pm\frac{\mathrm{1}+\sqrt{\mathrm{21}}}{\mathrm{4}}−\frac{\sqrt{\mathrm{7}}−\sqrt{\mathrm{3}}}{\mathrm{4}}\mathrm{i} \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com