Question and Answers Forum

All Questions      Topic List

Geometry Questions

Previous in All Question      Next in All Question      

Previous in Geometry      Next in Geometry      

Question Number 6384 by Rasheed Soomro last updated on 25/Jun/16

Commented by Rasheed Soomro last updated on 25/Jun/16

Question reposted.

$${Question}\:{reposted}. \\ $$

Commented by nburiburu last updated on 25/Jun/16

the b is easier than a  since ABC is equilateral triangle then  ∢HAB=30°  and by construction ∢ GHA=30° (it can be demonstrated by altern angles between parallel lines also)  then, since the construction is completely polar and simetric  GHI=HIG=IGH=2×30°=60°   so  it is equilateral.

$${the}\:{b}\:{is}\:{easier}\:{than}\:{a} \\ $$$${since}\:{ABC}\:{is}\:{equilateral}\:{triangle}\:{then} \\ $$$$\sphericalangle{HAB}=\mathrm{30}°\:\:{and}\:{by}\:{construction}\:\sphericalangle\:{GHA}=\mathrm{30}°\:\left({it}\:{can}\:{be}\:{demonstrated}\:{by}\:{altern}\:{angles}\:{between}\:{parallel}\:{lines}\:{also}\right) \\ $$$${then},\:{since}\:{the}\:{construction}\:{is}\:{completely}\:{polar}\:{and}\:{simetric} \\ $$$${GHI}={HIG}={IGH}=\mathrm{2}×\mathrm{30}°=\mathrm{60}°\: \\ $$$${so}\:\:{it}\:{is}\:{equilateral}. \\ $$

Commented by Rasheed Soomro last updated on 27/Jun/16

THANKS!    Waiting^(...)  for other part.

$$\mathscr{THANKS}!\:\: \\ $$$${Waiting}^{...} \:{for}\:{other}\:{part}. \\ $$

Answered by Yozzii last updated on 27/Jun/16

(a)We know that △ABC is equilateral  and ∣AB∣=x>0. Thus, ∣CB∣=∣AC∣=x.  F is the midpoint of AB and ∠CAF=60°.  Let α=∠ACF and β=∠CFA.   Since ∠ACF+∠CFA+∠CAF=180°  ⇒α+β+60°=180°⇒α=120°−β.  Note that 0<α≤90° and 0<β≤90°.  By the law of sines,  ((sin∠CFA)/(∣AC∣))=((sin∠ACF)/(∣AF∣))  or  ((sinβ)/x)=((sin(120°−β))/(0.5x))  sinβ=2sin(120°−β)  sinβ=2(sin120°cosβ−sinβcos120°)  sinβ=(√3)cosβ+sinβ  0<β≤90°⇒β=90°.  Since β=90° and ∣AF∣=∣FB∣, then  FC is a perpendicular bisector of AB.  By symmetry of △ABC, AH and GB  are also perpendicular bisectors.  Let O be the point of intersection of the  three perpendicular bisectors of △ABC.  Then, ∠HAB=∠OAF=(1/2)∠CAF=30°.  Since ∠AFO=∠AFC=90°, △AOF is  right−angled and we can write  cos∠OAF=((∣AF∣)/(∣AO∣))⇒∣AO∣=((x/2)/(cos30°))=(x/(√3)).  Also note that ∠AOF=90°−∠OAF=60°  and ∠COH=∠AOF=60° since   ∠AOF and ∠COH are vertically opposite  angles. We can likewise deduce that   ∠GOC=60° by virtue of the symmetry  of △ABC about the line CF.   So, ∠GOH=∠GOC+∠COH=2×60°=120°.    A is the centre of the arc HB so that  ∣AH∣=∣AB∣=x. A,O and H are collinear  so that ∣OH∣=∣AH∣−∣AO∣=x−(x/(√3))=x(1−(1/(√3))).  We can similarly find that ∣OG∣=x(1−(1/(√3))).  By the law of cosines in △GOH  ∣GH∣^2 =∣OH∣^2 +∣OG∣^2 −2∣OH∣∣OG∣cos∠GOH.  ∴∣GH∣^2 =2(x(1−(1/(√3))))^2 (1−cos120°)                  =((2x^2 ((√3)−1)^2 )/3)×(1+(1/2))  Or ∣GH∣=x((√3)−1).  (b)Rotating △ABC about O through  120° and then 120° once more shows  that the lines HI and GI coincide exactly with  the  initial position of the line GH,  having the same length after both  rotations.  Hence, △GHI is equilateral.  Or, by such symmetry of △ABC,  we should find that both ∣HI∣ and  ∣GI∣ equal x((√3)−1). So, △GHI is equilateral.

$$\left({a}\right){We}\:{know}\:{that}\:\bigtriangleup{ABC}\:{is}\:{equilateral} \\ $$$${and}\:\mid{AB}\mid={x}>\mathrm{0}.\:{Thus},\:\mid{CB}\mid=\mid{AC}\mid={x}. \\ $$$${F}\:{is}\:{the}\:{midpoint}\:{of}\:{AB}\:{and}\:\angle{CAF}=\mathrm{60}°. \\ $$$${Let}\:\alpha=\angle{ACF}\:{and}\:\beta=\angle{CFA}.\: \\ $$$${Since}\:\angle{ACF}+\angle{CFA}+\angle{CAF}=\mathrm{180}° \\ $$$$\Rightarrow\alpha+\beta+\mathrm{60}°=\mathrm{180}°\Rightarrow\alpha=\mathrm{120}°−\beta. \\ $$$${Note}\:{that}\:\mathrm{0}<\alpha\leqslant\mathrm{90}°\:{and}\:\mathrm{0}<\beta\leqslant\mathrm{90}°. \\ $$$${By}\:{the}\:{law}\:{of}\:{sines}, \\ $$$$\frac{{sin}\angle{CFA}}{\mid{AC}\mid}=\frac{{sin}\angle{ACF}}{\mid{AF}\mid} \\ $$$${or}\:\:\frac{{sin}\beta}{{x}}=\frac{{sin}\left(\mathrm{120}°−\beta\right)}{\mathrm{0}.\mathrm{5}{x}} \\ $$$${sin}\beta=\mathrm{2}{sin}\left(\mathrm{120}°−\beta\right) \\ $$$${sin}\beta=\mathrm{2}\left({sin}\mathrm{120}°{cos}\beta−{sin}\beta{cos}\mathrm{120}°\right) \\ $$$${sin}\beta=\sqrt{\mathrm{3}}{cos}\beta+{sin}\beta \\ $$$$\mathrm{0}<\beta\leqslant\mathrm{90}°\Rightarrow\beta=\mathrm{90}°. \\ $$$${Since}\:\beta=\mathrm{90}°\:{and}\:\mid{AF}\mid=\mid{FB}\mid,\:{then} \\ $$$${FC}\:{is}\:{a}\:{perpendicular}\:{bisector}\:{of}\:{AB}. \\ $$$${By}\:{symmetry}\:{of}\:\bigtriangleup{ABC},\:{AH}\:{and}\:{GB} \\ $$$${are}\:{also}\:{perpendicular}\:{bisectors}. \\ $$$${Let}\:{O}\:{be}\:{the}\:{point}\:{of}\:{intersection}\:{of}\:{the} \\ $$$${three}\:{perpendicular}\:{bisectors}\:{of}\:\bigtriangleup{ABC}. \\ $$$${Then},\:\angle{HAB}=\angle{OAF}=\frac{\mathrm{1}}{\mathrm{2}}\angle{CAF}=\mathrm{30}°. \\ $$$${Since}\:\angle{AFO}=\angle{AFC}=\mathrm{90}°,\:\bigtriangleup{AOF}\:{is} \\ $$$${right}−{angled}\:{and}\:{we}\:{can}\:{write} \\ $$$${cos}\angle{OAF}=\frac{\mid{AF}\mid}{\mid{AO}\mid}\Rightarrow\mid{AO}\mid=\frac{{x}/\mathrm{2}}{{cos}\mathrm{30}°}=\frac{{x}}{\sqrt{\mathrm{3}}}. \\ $$$${Also}\:{note}\:{that}\:\angle{AOF}=\mathrm{90}°−\angle{OAF}=\mathrm{60}° \\ $$$${and}\:\angle{COH}=\angle{AOF}=\mathrm{60}°\:{since}\: \\ $$$$\angle{AOF}\:{and}\:\angle{COH}\:{are}\:{vertically}\:{opposite} \\ $$$${angles}.\:{We}\:{can}\:{likewise}\:{deduce}\:{that}\: \\ $$$$\angle{GOC}=\mathrm{60}°\:{by}\:{virtue}\:{of}\:{the}\:{symmetry} \\ $$$${of}\:\bigtriangleup{ABC}\:{about}\:{the}\:{line}\:{CF}.\: \\ $$$${So},\:\angle{GOH}=\angle{GOC}+\angle{COH}=\mathrm{2}×\mathrm{60}°=\mathrm{120}°. \\ $$$$ \\ $$$${A}\:{is}\:{the}\:{centre}\:{of}\:{the}\:{arc}\:{HB}\:{so}\:{that} \\ $$$$\mid{AH}\mid=\mid{AB}\mid={x}.\:{A},{O}\:{and}\:{H}\:{are}\:{collinear} \\ $$$${so}\:{that}\:\mid{OH}\mid=\mid{AH}\mid−\mid{AO}\mid={x}−\frac{{x}}{\sqrt{\mathrm{3}}}={x}\left(\mathrm{1}−\frac{\mathrm{1}}{\sqrt{\mathrm{3}}}\right). \\ $$$${We}\:{can}\:{similarly}\:{find}\:{that}\:\mid{OG}\mid={x}\left(\mathrm{1}−\frac{\mathrm{1}}{\sqrt{\mathrm{3}}}\right). \\ $$$${By}\:{the}\:{law}\:{of}\:{cosines}\:{in}\:\bigtriangleup{GOH} \\ $$$$\mid{GH}\mid^{\mathrm{2}} =\mid{OH}\mid^{\mathrm{2}} +\mid{OG}\mid^{\mathrm{2}} −\mathrm{2}\mid{OH}\mid\mid{OG}\mid{cos}\angle{GOH}. \\ $$$$\therefore\mid{GH}\mid^{\mathrm{2}} =\mathrm{2}\left({x}\left(\mathrm{1}−\frac{\mathrm{1}}{\sqrt{\mathrm{3}}}\right)\right)^{\mathrm{2}} \left(\mathrm{1}−{cos}\mathrm{120}°\right) \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:=\frac{\mathrm{2}{x}^{\mathrm{2}} \left(\sqrt{\mathrm{3}}−\mathrm{1}\right)^{\mathrm{2}} }{\mathrm{3}}×\left(\mathrm{1}+\frac{\mathrm{1}}{\mathrm{2}}\right) \\ $$$${Or}\:\mid{GH}\mid={x}\left(\sqrt{\mathrm{3}}−\mathrm{1}\right). \\ $$$$\left({b}\right){Rotating}\:\bigtriangleup{ABC}\:{about}\:{O}\:{through} \\ $$$$\mathrm{120}°\:{and}\:{then}\:\mathrm{120}°\:{once}\:{more}\:{shows} \\ $$$${that}\:{the}\:{lines}\:{HI}\:{and}\:{GI}\:{coincide}\:{exactly}\:{with} \\ $$$${the}\:\:{initial}\:{position}\:{of}\:{the}\:{line}\:{GH}, \\ $$$${having}\:{the}\:{same}\:{length}\:{after}\:{both} \\ $$$${rotations}. \\ $$$${Hence},\:\bigtriangleup{GHI}\:{is}\:{equilateral}. \\ $$$${Or},\:{by}\:{such}\:{symmetry}\:{of}\:\bigtriangleup{ABC}, \\ $$$${we}\:{should}\:{find}\:{that}\:{both}\:\mid{HI}\mid\:{and} \\ $$$$\mid{GI}\mid\:{equal}\:{x}\left(\sqrt{\mathrm{3}}−\mathrm{1}\right).\:{So},\:\bigtriangleup{GHI}\:{is}\:{equilateral}. \\ $$$$ \\ $$

Commented by Rasheed Soomro last updated on 28/Jun/16

GREAT !!....I have reposted the  requested  question.

$$\mathcal{GREAT}\:!!....{I}\:{have}\:{reposted}\:{the} \\ $$$${requested}\:\:{question}. \\ $$

Commented by Yozzii last updated on 27/Jun/16

You should repost the question concerning  the treatment of the general case.

$${You}\:{should}\:{repost}\:{the}\:{question}\:{concerning} \\ $$$${the}\:{treatment}\:{of}\:{the}\:{general}\:{case}. \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com