Question and Answers Forum

All Questions      Topic List

UNKNOWN Questions

Previous in All Question      Next in All Question      

Previous in UNKNOWN      Next in UNKNOWN      

Question Number 63865 by mmkkmm000m last updated on 10/Jul/19

If ∫  ((4 e^x + 6 e^(−x) )/(9 e^x − 4 e^(−x) ))dx=Ax+B log(9e^(2x) −4)+C,  then

If4ex+6ex9ex4exdx=Ax+Blog(9e2x4)+C,then

Commented by kaivan.ahmadi last updated on 10/Jul/19

(Ax+Blog(9e^(2x) −4))^′ =((4e^x +6e^(−x) )/(9e^x −4e^(−x) ))   but  the left hand side is equal to  A+B×((18e^(2x) )/(9e^(2x) −4))×(1/(ln10))=A+(B/(ln10))×((18e^x )/(9e^x −4e^(−x) ))=  ((9Ae^x ln10−4Ae^(−x) ln10+18Be^x )/(ln10(9e^x −4e^(−x) )))=  (((9A+((18)/(ln10))B)e^x −4Ae^(−x) )/(9e^x −4e^(−x) ))⇒   { ((4A=6⇒A=(3/2))),((9A+((18)/(ln10))B=4⇒((18)/(ln10))B=((−19)/2)⇒B=((−19ln10)/(36)))) :}

(Ax+Blog(9e2x4))=4ex+6ex9ex4exbutthelefthandsideisequaltoA+B×18e2x9e2x4×1ln10=A+Bln10×18ex9ex4ex=9Aexln104Aexln10+18Bexln10(9ex4ex)=(9A+18ln10B)ex4Aex9ex4ex{4A=6A=329A+18ln10B=418ln10B=192B=19ln1036

Commented by mathmax by abdo last updated on 10/Jul/19

let I =∫ ((4e^x  +6e^(−x) )/(9e^x −4 e^(−x) ))dx[⇒I =∫  ((4e^(2x)  +6)/(9e^(2x) −4))dx  changement e^(2x) =t give  I =∫   ((4t+6)/(9t−4)) (dt/(2t)) =∫   ((2t+3)/(t(9t−4)))dt let decompose F(t)=((2t+3)/(t(9t−4)))  F(t)=(a/t) + (b/(9t−4))  a=lim_(t→0) tF(t)=−(3/4)  b=lim_(t→(4/9))    (9t−4)F(t) =((2×(4/9)+3)/(4/9)) =((8+27)/4) =((35)/4) ⇒  F(t)=−(3/(4t)) +((35)/(4(9t−4))) ⇒I =∫(−(3/(4t))+((35)/(4(9t−4))))dt  =−(3/4)ln∣t∣ +((35)/(36))ln∣9t−4∣ +c  −(3/4)(2x)+((35)/(36))ln∣9e^(2x) −4∣ +c  =−(3/2)x +((35)/(36))ln∣9e^(2x) −4∣ +c ⇒  A=−(3/2),    B =((35)/(36))  and  C =c .

letI=4ex+6ex9ex4exdx[I=4e2x+69e2x4dxchangemente2x=tgiveI=4t+69t4dt2t=2t+3t(9t4)dtletdecomposeF(t)=2t+3t(9t4)F(t)=at+b9t4a=limt0tF(t)=34b=limt49(9t4)F(t)=2×49+349=8+274=354F(t)=34t+354(9t4)I=(34t+354(9t4))dt=34lnt+3536ln9t4+c34(2x)+3536ln9e2x4+c=32x+3536ln9e2x4+cA=32,B=3536andC=c.

Terms of Service

Privacy Policy

Contact: info@tinkutara.com