Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 63883 by mmkkmm000m last updated on 10/Jul/19

∫ln(x)ln(1−x)ln(1−2x)dx

ln(x)ln(1x)ln(12x)dx

Commented by mathmax by abdo last updated on 12/Jul/19

let A =∫ ln(x)ln(1−x)ln(1−2x) dx  we have  ln^′ (1−u) =−(1/(1−u)) =−Σ_(n=0) ^∞  u^n  ⇒ln(1−u) =−Σ_(n=0) ^∞  (u^(n+1) /(n+1)) +c(c=0)  =−Σ_(n=1) ^∞  (u^n /n)      (  ∣u∣<1) ⇒for ∣x∣<(1/2) we get  ln(1−2x) =−Σ_(n=1) ^∞  ((2^n x^n )/n)  and ln(1−x) =−Σ_(n=1) ^∞  (x^n /n) ⇒  ln(1−x)ln(1−2x) =(Σ_(n=1) ^∞  (2^n /n)x^n ).(Σ_(n=1) ^∞  (x^n /n))  =Σ_(n=1) ^∞  c_n  x^n   with c_n =Σ_(i+j=n) a_i b_j =Σ_(i=1) ^n  a_i b_(n−i)   =Σ_(i=1) ^n   (2^i /i) (1/(n−i)) ⇒ln(1−x)ln(1−2x) =Σ_(n=1) ^∞ (Σ_(i=1) ^n  (2^i /(i(n−i))))x^n  ⇒  ∫ ln(x)ln(1−x)ln(1−2x)dx =∫ lnx(Σ_(n=1) ^∞ Σ_(i=1) ^n   (2^i /(i(n−i))))x^n dx  =Σ_(n=1) ^∞ Σ_(i=1) ^n  (2^i /(i(n−i))) ∫ x^n  ln(x)dx +c  W_n =∫  x^n  ln(x)dx  by parts   W_n =(x^(n+1) /(n+1)) ln(x) −∫ (x^(n+1) /(n+1)) (dx/x) =(x^(n+1) /(n+1))ln(x)−(1/((n+1))) ∫ x^n dx  =((x^(n+1) ln(x))/(n+1)) −(x^(n+1) /((n+1)^2 )) ⇒  ∫ln(x)ln(1−x)ln(1−2x)dx   =Σ_(n=1) ^∞  Σ_(i=1) ^n  (2^i /(i(n−i))) ((x^(n+1) ln(x))/(n+1)) −Σ_(n=1) ^∞  Σ_(i=1) ^n  (2^i /(i(n−i)(n+1)^2 ))x^(n+1)  +c

letA=ln(x)ln(1x)ln(12x)dxwehaveln(1u)=11u=n=0unln(1u)=n=0un+1n+1+c(c=0)=n=1unn(u∣<1)forx∣<12wegetln(12x)=n=12nxnnandln(1x)=n=1xnnln(1x)ln(12x)=(n=12nnxn).(n=1xnn)=n=1cnxnwithcn=i+j=naibj=i=1naibni=i=1n2ii1niln(1x)ln(12x)=n=1(i=1n2ii(ni))xnln(x)ln(1x)ln(12x)dx=lnx(n=1i=1n2ii(ni))xndx=n=1i=1n2ii(ni)xnln(x)dx+cWn=xnln(x)dxbypartsWn=xn+1n+1ln(x)xn+1n+1dxx=xn+1n+1ln(x)1(n+1)xndx=xn+1ln(x)n+1xn+1(n+1)2ln(x)ln(1x)ln(12x)dx=n=1i=1n2ii(ni)xn+1ln(x)n+1n=1i=1n2ii(ni)(n+1)2xn+1+c

Terms of Service

Privacy Policy

Contact: info@tinkutara.com