Question and Answers Forum

All Questions      Topic List

Geometry Questions

Previous in All Question      Next in All Question      

Previous in Geometry      Next in Geometry      

Question Number 64009 by ajfour last updated on 12/Jul/19

Commented by ajfour last updated on 12/Jul/19

Find R in terms of a and b.

FindRintermsofaandb.

Answered by mr W last updated on 12/Jul/19

Commented by mr W last updated on 12/Jul/19

eqn. of parabola:  y=−Ax^2 +b  0=−Aa^2 +b  ⇒A=(b/a^2 )  ⇒y=b(1−(x^2 /a^2 ))  y′=−((2bx)/a^2 )  P(x_P ,y_P )  y_P =b(1−(x_P ^2 /a^2 ))  (1/(tan θ))=(a^2 /(2bx_P ))  ⇒x_P =((a^2  tan θ)/(2b))  y_P +R cos θ=R  ⇒y_P =R(1−cos θ)=b(1−(x_P ^2 /a^2 ))  ⇒(R/b)(1−cos θ)=(1−((a^2  tan^2  θ)/(4b^2 )))  with ρ=(R/b), λ=(a/b)  ⇒ρ=(1/(1−cos θ))(1−((λ^2  tan^2  θ)/4))   ...(i)    (2R)^2 =(R+b−R)^2 +(x_P +R sin θ)^2   4R^2 =b^2 +(((a^2  tan θ)/(2b))+R sin θ)^2   ⇒4ρ^2 =1+(((λ^2  tan θ)/2)+ρ sin θ)^2    ...(ii)  put (i) into (ii) to get θ    example:  a=10, b=5 ⇒λ=a/b=2  ⇒θ=39.6628°  ⇒ρ=1.3579

eqn.ofparabola:y=Ax2+b0=Aa2+bA=ba2y=b(1x2a2)y=2bxa2P(xP,yP)yP=b(1xP2a2)1tanθ=a22bxPxP=a2tanθ2byP+Rcosθ=RyP=R(1cosθ)=b(1xP2a2)Rb(1cosθ)=(1a2tan2θ4b2)withρ=Rb,λ=abρ=11cosθ(1λ2tan2θ4)...(i)(2R)2=(R+bR)2+(xP+Rsinθ)24R2=b2+(a2tanθ2b+Rsinθ)24ρ2=1+(λ2tanθ2+ρsinθ)2...(ii)put(i)into(ii)togetθexample:a=10,b=5λ=a/b=2θ=39.6628°ρ=1.3579

Commented by mr W last updated on 12/Jul/19

Commented by ajfour last updated on 12/Jul/19

cool, Sir. Wonderful.

cool,Sir.Wonderful.

Answered by ajfour last updated on 12/Jul/19

y=Ax^2 +b  0=Aa^2 +b    ⇒  A=−b/a^2   let parabola touch the circle on  right at (h,k).  k=b(1−(h^2 /a^2 ))  (dy/dx)=2Ax = 2(−(b/a^2 ))h  slope of normal tan θ=(a^2 /(2bh))  let centre of right circle be  C(p,q)     p=h+Rcos θ  , q=k+Rsin θ  Now   q=R  and     p^2 +b^2 =4R^2   ⇒ R=b(1−(h^2 /a^2 ))+Rsin θ     (h+Rcos θ)^2 +b^2 =4R^2        tan θ=(a^2 /(2bh))     ⇒  h=((a^2 cos θ)/(2bsin θ))    ⇒ R=b(1−((a^2 cos^2 θ)/(4b^2 sin^2 θ)))+Rsin θ  ⇒   R=(b/((1−sin θ)))(1−((a^2 cos^2 θ)/(4b^2 sin^2 θ)))  (((a^2 cos θ)/(2bsin θ))+Rcos θ)^2 =4R^2 −b^2   [((a^2 cos θ)/(2bsin θ))+((b(1−((a^2 cos^2 θ)/(4b^2 sin^2 θ)))cos θ)/(1−sin θ))]^2             =[((2b(1−((a^2 cos^2 θ)/(4b^2 sin^2 θ))))/(1−sin θ))]^2 −b^2   let  sin θ=t  ⇒ (1−t^2 )[(a^2 /(2bt))+(b/(1−t))(1−((a^2 (1−t^2 ))/(4b^2 t^2 )))]^2           =[((2b(1−((a^2 (1−t^2 ))/(4b^2 t^2 ))))/(1−t))]^2 −b^2   ⇒  (1−t^2 )[2a^2 b(1−t)t+b{4b^2 t^2 −a^2 +a^2 t^2 }]^2         +16b^6 (1−t)^2 t^4         = 4b^2 [4b^2 t^2 −a^2 +a^2 t^2 ]^2   ⇒    (1−t^2 )[(4b^2 −a^2 )t^2 +2a^2 t−a^2 ]^2    +16b^4 (1−t)^2 t^4 =4[(a^2 +4b^2 )t^2 −a^2 ]^2   And for a=2, b=1  (1−t^2 )(2t−1)^2 =(1−t)^2 t^4 +4(2t^2 −1)^2   ⇒   t=0.7698144  R=(b/((1−sin θ)))(1−((a^2 cos^2 θ)/(4b^2 sin^2 θ)))        R=((2t^2 −1)/(t^2 (1−t))) = 1.35787 ■

y=Ax2+b0=Aa2+bA=b/a2letparabolatouchthecircleonrightat(h,k).k=b(1h2a2)dydx=2Ax=2(ba2)hslopeofnormaltanθ=a22bhletcentreofrightcirclebeC(p,q)p=h+Rcosθ,q=k+RsinθNowq=Randp2+b2=4R2R=b(1h2a2)+Rsinθ(h+Rcosθ)2+b2=4R2tanθ=a22bhh=a2cosθ2bsinθR=b(1a2cos2θ4b2sin2θ)+RsinθR=b(1sinθ)(1a2cos2θ4b2sin2θ)(a2cosθ2bsinθ+Rcosθ)2=4R2b2[a2cosθ2bsinθ+b(1a2cos2θ4b2sin2θ)cosθ1sinθ]2=[2b(1a2cos2θ4b2sin2θ)1sinθ]2b2letsinθ=t(1t2)[a22bt+b1t(1a2(1t2)4b2t2)]2=[2b(1a2(1t2)4b2t2)1t]2b2(1t2)[2a2b(1t)t+b{4b2t2a2+a2t2}]2+16b6(1t)2t4=4b2[4b2t2a2+a2t2]2(1t2)[(4b2a2)t2+2a2ta2]2+16b4(1t)2t4=4[(a2+4b2)t2a2]2Andfora=2,b=1(1t2)(2t1)2=(1t)2t4+4(2t21)2t=0.7698144R=b(1sinθ)(1a2cos2θ4b2sin2θ)R=2t21t2(1t)=1.35787

Commented by mr W last updated on 13/Jul/19

thanks sir!  it seems that one can not get a final  equation only for R.

thankssir!itseemsthatonecannotgetafinalequationonlyforR.

Terms of Service

Privacy Policy

Contact: info@tinkutara.com