All Questions Topic List
Limits Questions
Previous in All Question Next in All Question
Previous in Limits Next in Limits
Question Number 64047 by aliesam last updated on 12/Jul/19
Commented by mathmax by abdo last updated on 12/Jul/19
wehavex0=1andxn+1=3+2xn3+xn⇒xn+1=f(xn)withf(x)=2x+3x+3fiscontinueonR−{−3}andlimx→+∞=2f′(x)=2(x+3)−(2x+3)×1(x+3)2=2x+6−2x−3(x+3)2=3(x+3)2>0⇒fisincreazingonR−{−3}letdeterminethefixedpointf(x)=x⇒2x+3x+3=x⇒2x+3=x2+3x⇒x2+3x−2x−3=0⇒x2+x−3=0→Δ=1−4(−3)=13⇒x1=−1+132andx2=−1−132butxn>0foralln⇒limn→+∞xn=13−12.
Commented by aliesam last updated on 12/Jul/19
godblessyousir
youarewelcome.
Terms of Service
Privacy Policy
Contact: info@tinkutara.com