All Questions Topic List
Integration Questions
Previous in All Question Next in All Question
Previous in Integration Next in Integration
Question Number 113738 by bemath last updated on 15/Sep/20
∫π0xsinx1+cos2xdx?
Answered by bobhans last updated on 15/Sep/20
I=∫π0xsinx1+cos2xdxreplacexbyπ−x→I=∫0π(π−x)sin(π−x)1+cos2(π−x)(−dx)I=∫π0(π−x)sinx1+cos2xdx=∫π0πsinx1+cos2xdx−∫π0xsinx1+cos2xdx2I=∫π0πsinx1+cos2xdxconsider∫πsinx1+cosxdx=−π∫d(cosx)1+cos2x=−π∫du1+u2=−πtan−1(cosx)+cnowwehave2I=−π[tan−1(cosx)]0πI=−π2[−π4−π4]=π24.
Terms of Service
Privacy Policy
Contact: info@tinkutara.com