Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 113738 by bemath last updated on 15/Sep/20

 ∫_0 ^π  ((x sin x)/(1+cos^2 x)) dx ?

π0xsinx1+cos2xdx?

Answered by bobhans last updated on 15/Sep/20

I = ∫_0 ^π  ((x sin x)/(1+cos^2 x)) dx   replace x by π−x →I=∫_π ^0  (((π−x)sin (π−x))/(1+cos^2 (π−x))) (−dx)  I= ∫_0 ^π  (((π−x)sin x)/(1+cos^2 x)) dx = ∫_0 ^π  ((πsin x)/(1+cos^2 x)) dx−∫_0 ^π  ((xsin x)/(1+cos^2 x)) dx  2I = ∫_0 ^π  ((π sin x)/(1+cos^2 x)) dx   consider ∫ ((π sin x)/(1+cos x))dx = −π∫ ((d(cos x))/(1+cos^2 x))                                                     = −π∫ (du/(1+u^2 ))                                                     = −π tan^(−1) (cos x) + c        now we have 2I = −π [ tan^(−1) (cos x) ]_0 ^π   I = −(π/2)[−(π/4)−(π/4) ]= (π^2 /4).

I=π0xsinx1+cos2xdxreplacexbyπxI=0π(πx)sin(πx)1+cos2(πx)(dx)I=π0(πx)sinx1+cos2xdx=π0πsinx1+cos2xdxπ0xsinx1+cos2xdx2I=π0πsinx1+cos2xdxconsiderπsinx1+cosxdx=πd(cosx)1+cos2x=πdu1+u2=πtan1(cosx)+cnowwehave2I=π[tan1(cosx)]0πI=π2[π4π4]=π24.

Terms of Service

Privacy Policy

Contact: info@tinkutara.com