Question and Answers Forum

All Questions      Topic List

Geometry Questions

Previous in All Question      Next in All Question      

Previous in Geometry      Next in Geometry      

Question Number 64119 by ajfour last updated on 13/Jul/19

Commented by ajfour last updated on 13/Jul/19

In terms of the sides of △ABC, find  the radius of the central circle.

IntermsofthesidesofABC,findtheradiusofthecentralcircle.

Answered by ajfour last updated on 14/Jul/19

p :radius of circle with center A  q :  center B ;  r : center C  and R : radius of central circle  q+r=a  r+p=b  p+q=c  p+q+r=s  p=s−a , q=s−b , r=s−c  let center of small circle be (0,k_A )  (x+q)^2 +y^2 =(q+R)^2   (x−r)^2 +y^2 =(r+R)^2   ⇒ (2x+q−r)(q+r)=(q−r)(q+r+2R)  ⇒ 2x=(((q−r)(q+r+2R))/(q+r))−(q−r)   x=(((q−r)R)/(q+r))   y^2 =(q+R)^2 −(q+(((q−r)R)/(q+r)))^2    y^2 =[q+R+q+(((q−r)R)/(q+r))][R−(((q−r)R)/(q+r))]   y^2 =((4qrR)/(q+r))[1+(R/(q+r))]  k_A =(√(((4qrR)/(q+r))(1+(R/(q+r)))))   ⇒  k_A =(2/a)(√(qrR(a+R)))  let Area of △ABC be △.  △=((ak_A +bk_B +ck_C )/2)  ⇒ (√(qrR(a+R)))+(√(rpR(b+R)))+                +(√(pqR(c+R))) = △  ....

p:radiusofcirclewithcenterAq:centerB;r:centerCandR:radiusofcentralcircleq+r=ar+p=bp+q=cp+q+r=sp=sa,q=sb,r=scletcenterofsmallcirclebe(0,kA)(x+q)2+y2=(q+R)2(xr)2+y2=(r+R)2(2x+qr)(q+r)=(qr)(q+r+2R)2x=(qr)(q+r+2R)q+r(qr)x=(qr)Rq+ry2=(q+R)2(q+(qr)Rq+r)2y2=[q+R+q+(qr)Rq+r][R(qr)Rq+r]y2=4qrRq+r[1+Rq+r]kA=4qrRq+r(1+Rq+r)kA=2aqrR(a+R)letAreaofABCbe.=akA+bkB+ckC2qrR(a+R)+rpR(b+R)++pqR(c+R)=....

Answered by ajfour last updated on 15/Jul/19

let center of central circle be    (h,k) and radius ρ.  let B be origin.  h^2 +k^2 =(q+ρ)^2   (h−q−r)^2 +k^2 =(r+ρ)^2   ⇒(q+r)[2h−(q+r)]=(q−r)(q+r+2ρ)  2h=(((q−r)(2ρ+q+r))/(q+r))+q+r      h =((ρ(q−r))/(q+r))+q      k^2 =(q+ρ)^2 −[((ρ(q−r))/(q+r))+q]^2       k^2 =ρ^2 +2qρ−((ρ^2 (q−r)^2 )/((q+r)^2 ))−((2qρ(q−r))/(q+r))     =((4qrρ^2 )/((q+r)^2 ))+((4qrρ)/((q+r))) = ((4qrρ[ρ+(q+r)])/((q+r)^2 ))  let A(x_A , y_A )     x_A =(p+q)cos B      y_B =(p+q)sin B  [h−(p+q)cos B]^2 +[k−(p+q)sin B]^2 =(p+ρ)^2   ⇒ (q+ρ)^2 +(p+q)^2 −(ρ+p)^2      = 2(p+q)[hcos B+ksin B]  ⇒ [((q^2 +qρ+pq−pρ)/(p+q))−hcos B]^2              =k^2 sin^2 B  ⇒  [((q^2 +qρ+pq−pρ)/(p+q))−(((ρ(q−r))/(q+r))+q)cos B]^2         =((4qrρ[ρ+(q+r)])/((q+r)^2 ))sin^2 B  ⇒[((ρ(q−p))/c)−((ρ(q−r)cos B)/a)+q(1−cos B)]^2       =((4qrρ^2 )/a^2 )sin^2 B+((4qrρ)/a)sin^2 B  ⇒  quadratic in ρ ;   one is radius of circumcircle  of the three circles, and the other  the radius of required central one.  ⇒ [(A−B)ρ+C]^2 =Dρ^2 +Eρ     [(A−B)^2 −D]ρ^2 +[2C(A−B)−E]ρ+C^2 =0  ρ=((−2C(A−B)+E−(√(−4C(A−B)+E^2 +4C^2 D)))/(2[(A−B)^2 −D]))  ρ =((−2q(1−cos B)[((q−p)/c)−(((q−r))/a)cos B]+((4qr)/a)sin^2 B−(√(−4q(1−cos B)[((q−p)/c)−(((q−r))/a)cos B]+((16q^2 r^2 )/a^2 )sin^4 B+4q^2 (1−cos B)^2 (((4qr)/a^2 )sin^2 B))))/(2[((q−p)/c)−(((q−r))/a)cos B]^2 −((8qr)/a^2 )sin^2 B))          with   cos B = ((c^2 +a^2 −b^2 )/(2ac))  and    p=s−a , q=s−b , r=s−c  ■

letcenterofcentralcirclebe(h,k)andradiusρ.letBbeorigin.h2+k2=(q+ρ)2(hqr)2+k2=(r+ρ)2(q+r)[2h(q+r)]=(qr)(q+r+2ρ)2h=(qr)(2ρ+q+r)q+r+q+rh=ρ(qr)q+r+qk2=(q+ρ)2[ρ(qr)q+r+q]2k2=ρ2+2qρρ2(qr)2(q+r)22qρ(qr)q+r=4qrρ2(q+r)2+4qrρ(q+r)=4qrρ[ρ+(q+r)](q+r)2letA(xA,yA)xA=(p+q)cosByB=(p+q)sinB[h(p+q)cosB]2+[k(p+q)sinB]2=(p+ρ)2(q+ρ)2+(p+q)2(ρ+p)2=2(p+q)[hcosB+ksinB][q2+qρ+pqpρp+qhcosB]2=k2sin2B[q2+qρ+pqpρp+q(ρ(qr)q+r+q)cosB]2=4qrρ[ρ+(q+r)](q+r)2sin2B[ρ(qp)cρ(qr)cosBa+q(1cosB)]2=4qrρ2a2sin2B+4qrρasin2Bquadraticinρ;oneisradiusofcircumcircleofthethreecircles,andtheothertheradiusofrequiredcentralone.[(AB)ρ+C]2=Dρ2+Eρ[(AB)2D]ρ2+[2C(AB)E]ρ+C2=0ρ=2C(AB)+E4C(AB)+E2+4C2D2[(AB)2D]ρ=2q(1cosB)[qpc(qr)acosB]+4qrasin2B4q(1cosB)[qpc(qr)acosB]+16q2r2a2sin4B+4q2(1cosB)2(4qra2sin2B)2[qpc(qr)acosB]28qra2sin2BwithcosB=c2+a2b22acandp=sa,q=sb,r=sc

Commented by ajfour last updated on 15/Jul/19

if  b=c=a  then  B=60°  and  p=q=r=(a/2)  ⇒  ρ=((((3a)/4)−(√(((9a^2 )/(16))+((3a^2 )/(16)))))/(−(3/2)))  ⇒  ρ=(a/(√3))−(a/2)    (correct indeed).         ρ_(outer) =(a/(√3))+(a/2) .

ifb=c=athenB=60°andp=q=r=a2ρ=3a49a216+3a21632ρ=a3a2(correctindeed).ρouter=a3+a2.

Commented by mr W last updated on 15/Jul/19

in this special case:  s=(a/(2(2(√3)±3)))=(((2(√3)∓3)a)/6)  ± one for the small inscribed, and one  for the big circumcircle.  i.e. your result is correct for the  small circle.

inthisspecialcase:s=a2(23±3)=(233)a6±oneforthesmallinscribed,andoneforthebigcircumcircle.i.e.yourresultiscorrectforthesmallcircle.

Commented by ajfour last updated on 15/Jul/19

Commented by ajfour last updated on 15/Jul/19

Thanks sir, it turned right, my  faith in my second solution;  for it was just a quadratic.  can you try compressing my  found result, Sir?

Thankssir,itturnedright,myfaithinmysecondsolution;foritwasjustaquadratic.canyoutrycompressingmyfoundresult,Sir?

Commented by mr W last updated on 16/Jul/19

the final result is  ρ_i =(1/(2(√((1/(pq))+(1/(qr))+(1/(rp))))+((1/p)+(1/q)+(1/r))))  ρ_o =(1/(2(√((1/(pq))+(1/(qr))+(1/(rp))))−((1/p)+(1/q)+(1/r))))

thefinalresultisρi=121pq+1qr+1rp+(1p+1q+1r)ρo=121pq+1qr+1rp(1p+1q+1r)

Answered by mr W last updated on 15/Jul/19

a=q+r  b=r+p  c=p+q  s=a+b+c  ⇒p=s−a  ⇒q=s−b  ⇒r=s−c  center of inscribed circle M  MA=p+R  MB=q+R  MC=r+R  cos θ_A =((MB^2 +MC^2 −a^2 )/(2MB×MC))=(((q+R)^2 +(r+R)^2 −a^2 )/(2(q+R)(r+R)))  cos θ_B =(((r+R)^2 +(p+R)^2 −b^2 )/(2(r+R)(p+R)))  cos θ_C =(((p+R)^2 +(q+R)^2 −c^2 )/(2(p+R)(q+R)))  θ_A +θ_B +θ_C =2π  cos (θ_A +θ_B )=cos (2π−θ_C )  (((q+R)^2 +(r+R)^2 −a^2 )/(2(q+R)(r+R)))×(((r+R)^2 +(p+R)^2 −b^2 )/(2(r+R)(p+R)))−((√({[2(q+R)(r+R)]^2 −[(q+R)^2 +(r+R)^2 −a^2 ]^2 }{[2(r+R)(p+R)]^2 −[(r+R)^2 +(p+R)^2 −b^2 ]^2 }))/(2(q+R)(r+R)2(r+R)(p+R)))=(((p+R)^2 +(q+R)^2 −c^2 )/(2(p+R)(q+R)))  (({2R^2 +2(q+r)R+q^2 +r^2 −a^2 }{2R^2 +2(r+p)R+r^2 +p^2 −b^2 }−(√({[2(q+R)(r+R)]^2 −[(q+R)^2 +(r+R)^2 −a^2 ]^2 }{[2(r+R)(p+R)]^2 −[(r+R)^2 +(p+R)^2 −b^2 ]^2 })))/(2(r+R)^2 ))=2R^2 +2(p+q)R+p^2 +q^2 −c^2   {2R^2 +2(q+r)R+q^2 +r^2 −a^2 }{2R^2 +2(r+p)R+r^2 +p^2 −b^2 }−(√({(q+r+2R)^2 −a^2 }{a^2 −(q−r)^2 }{(r+p+2R)^2 −b^2 }{b^2 −(r−p)^2 }))=2(r+R)^2 {2R^2 +2(p+q)R+p^2 +q^2 −c^2 }  {2R^2 +2(q+r)R+q^2 +r^2 −a^2 }{2R^2 +2(r+p)R+r^2 +p^2 −b^2 }−(√((q+r+2R+a)(q+r+2R−a)4qr(r+p+2R+b)(r+p+2R−b)4rp))=2(r+R)^2 {2R^2 +2(p+q)R+p^2 +q^2 −c^2 }  {2R^2 +2(q+r)R−2qr}{2R^2 +2(r+p)R−2rp}−16Rr(√(pq(R+a)(R+b)))=2(r+R)^2 {2R^2 +2(p+q)R−2pq}  {R^2 +(q+r)R−qr}{R^2 +(r+p)R−rp}−4Rr(√(pq(R+a)(R+b)))=(R^2 +2rR+r^2 ){R^2 +(p+q)R−pq}  R^4 +(q+r)R^3 −qrR^2 +(r+p)R^3 +(q+r)(r+p)R^2 −qr(r+p)R−rpR^2 −rp(q+r)R+pqr^2 −4Rr(√(pq(R+a)(R+b)))=R^4 +2rR^3 +r^2 R^2 +(p+q)R^3 +2r(p+q)R^2 +r^2 (p+q)R−pqR^2 −2pqrR−pqr^2   (pq−qr−rp)R^2 −(p+q)r^2 R+pqr^2 =2Rr(√(pq(R+q+r)(R+r+p)))  .....

a=q+rb=r+pc=p+qs=a+b+cp=saq=sbr=sccenterofinscribedcircleMMA=p+RMB=q+RMC=r+RcosθA=MB2+MC2a22MB×MC=(q+R)2+(r+R)2a22(q+R)(r+R)cosθB=(r+R)2+(p+R)2b22(r+R)(p+R)cosθC=(p+R)2+(q+R)2c22(p+R)(q+R)θA+θB+θC=2πcos(θA+θB)=cos(2πθC)(q+R)2+(r+R)2a22(q+R)(r+R)×(r+R)2+(p+R)2b22(r+R)(p+R){[2(q+R)(r+R)]2[(q+R)2+(r+R)2a2]2}{[2(r+R)(p+R)]2[(r+R)2+(p+R)2b2]2}2(q+R)(r+R)2(r+R)(p+R)=(p+R)2+(q+R)2c22(p+R)(q+R){2R2+2(q+r)R+q2+r2a2}{2R2+2(r+p)R+r2+p2b2}{[2(q+R)(r+R)]2[(q+R)2+(r+R)2a2]2}{[2(r+R)(p+R)]2[(r+R)2+(p+R)2b2]2}2(r+R)2=2R2+2(p+q)R+p2+q2c2{2R2+2(q+r)R+q2+r2a2}{2R2+2(r+p)R+r2+p2b2}{(q+r+2R)2a2}{a2(qr)2}{(r+p+2R)2b2}{b2(rp)2}=2(r+R)2{2R2+2(p+q)R+p2+q2c2}{2R2+2(q+r)R+q2+r2a2}{2R2+2(r+p)R+r2+p2b2}(q+r+2R+a)(q+r+2Ra)4qr(r+p+2R+b)(r+p+2Rb)4rp=2(r+R)2{2R2+2(p+q)R+p2+q2c2}{2R2+2(q+r)R2qr}{2R2+2(r+p)R2rp}16Rrpq(R+a)(R+b)=2(r+R)2{2R2+2(p+q)R2pq}{R2+(q+r)Rqr}{R2+(r+p)Rrp}4Rrpq(R+a)(R+b)=(R2+2rR+r2){R2+(p+q)Rpq}R4+(q+r)R3qrR2+(r+p)R3+(q+r)(r+p)R2qr(r+p)RrpR2rp(q+r)R+pqr24Rrpq(R+a)(R+b)=R4+2rR3+r2R2+(p+q)R3+2r(p+q)R2+r2(p+q)RpqR22pqrRpqr2(pqqrrp)R2(p+q)r2R+pqr2=2Rrpq(R+q+r)(R+r+p).....

Commented by ajfour last updated on 15/Jul/19

This is injustice Sir.  You should not effort limitless..

ThisisinjusticeSir.Youshouldnoteffortlimitless..

Commented by mr W last updated on 14/Jul/19

this seems to be a tough way to obtain  the radius. i think your first method  with use of Δ should be able to reach  the goal.

thisseemstobeatoughwaytoobtaintheradius.ithinkyourfirstmethodwithuseofΔshouldbeabletoreachthegoal.

Terms of Service

Privacy Policy

Contact: info@tinkutara.com