All Questions Topic List
UNKNOWN Questions
Previous in All Question Next in All Question
Previous in UNKNOWN Next in UNKNOWN
Question Number 64139 by Chi Mes Try last updated on 14/Jul/19
∫10dxx2+2xcosα+1=αsinα
Commented by Prithwish sen last updated on 14/Jul/19
∫01dx(x+cosα)2+(sinα)2=[1(sinα).tan−1(x+cossinα)]01
Commented by mathmax by abdo last updated on 14/Jul/19
letI=∫01dxx2+2xcosα+1⇒I=∫01dxx2+2xcosα+cos2α+sin2α=∫01dx(x+cosα)2+sin2αchangementx+cosα=sinαtgiveI=∫cotanα1+cosαsinαsinαdtsin2α(1+t2)=1sinα[arctant]1tanα1+cosαsinα=1sinα{arctan(1+cosαsinα)−arctan(1tanα)but1+cosαsinα=2cos2(α2)2sin(α2)cos(α2)=1tan(α2)⇒arctan(1+cosαsinα)=+−π2−α2arctan(1tanα)=+−π2−α⇒I=1sinα{+−π2+−π2+α2}sothereisaerrorinthequestionifnotaequation...
Answered by Hope last updated on 15/Jul/19
Dr=(x+cosα)2+sin2αt=x+cosα∫cosα1+cosαdtt2+sin2α1sinα∣tan−1(tsinα)∣cosα1+cosα=1sinα[tan−1(1+cosαsinα)−tan−1(cosαsinα)]=1sinα[tan−1(cotα2)−tan−1(cotα)]=1sinα[tan−1(tan(π2−α2))−tan−1(π2−α)]=1sinα[π2−α2−π2+α]=α2sinα
Terms of Service
Privacy Policy
Contact: info@tinkutara.com