Question and Answers Forum

All Questions      Topic List

UNKNOWN Questions

Previous in All Question      Next in All Question      

Previous in UNKNOWN      Next in UNKNOWN      

Question Number 64139 by Chi Mes Try last updated on 14/Jul/19

∫_( 0) ^1    (dx/(x^2 +2x cos α+1)) = α sin α

10dxx2+2xcosα+1=αsinα

Commented by Prithwish sen last updated on 14/Jul/19

∫_0 ^1 (dx/((x+cosα)^2 +(sinα)^2 ))  =[(1/((sinα))).tan^(−1) (((x+cos)/(sinα)))]_0 ^1

01dx(x+cosα)2+(sinα)2=[1(sinα).tan1(x+cossinα)]01

Commented by mathmax by abdo last updated on 14/Jul/19

let I =∫_0 ^1  (dx/(x^2  +2xcosα +1)) ⇒I =∫_0 ^1   (dx/(x^2  +2xcosα +cos^2 α +sin^2 α))  =∫_0 ^1  (dx/((x+cosα)^2  +sin^2 α))  changement x+cosα =sinα t give  I = ∫_(cotanα) ^((1+cosα)/(sinα))    ((sinα dt)/(sin^2 α(1+t^2 ))) =(1/(sinα))[arctant]_(1/(tanα)) ^((1+cosα)/(sinα))   =(1/(sinα)){ arctan(((1+cosα)/(sinα)))−arctan((1/(tanα)))but  ((1+cosα)/(sinα)) =((2cos^2 ((α/2)))/(2sin((α/2))cos((α/2)))) =(1/(tan((α/2)))) ⇒  arctan(((1+cosα)/(sinα)))=+^− (π/2) −(α/2)  arctan((1/(tanα)))=+^− (π/2) −α  ⇒ I =(1/(sinα)){+^− (π/2) +^− (π/2) +(α/2)}  so there is a error in the question if not a equation...

letI=01dxx2+2xcosα+1I=01dxx2+2xcosα+cos2α+sin2α=01dx(x+cosα)2+sin2αchangementx+cosα=sinαtgiveI=cotanα1+cosαsinαsinαdtsin2α(1+t2)=1sinα[arctant]1tanα1+cosαsinα=1sinα{arctan(1+cosαsinα)arctan(1tanα)but1+cosαsinα=2cos2(α2)2sin(α2)cos(α2)=1tan(α2)arctan(1+cosαsinα)=+π2α2arctan(1tanα)=+π2αI=1sinα{+π2+π2+α2}sothereisaerrorinthequestionifnotaequation...

Answered by Hope last updated on 15/Jul/19

D_r =(x+cosα)^2 +sin^2 α  t=x+cosα  ∫_(cosα) ^(1+cosα) (dt/(t^2 +sin^2 α))  (1/(sinα))∣tan^(−1) ((t/(sinα)))∣_(cosα) ^(1+cosα)   =(1/(sinα))[tan^(−1) (((1+cosα)/(sinα)))−tan^(−1) (((cosα)/(sinα)))]  =(1/(sinα))[tan^(−1) (cot(α/2))−tan^(−1) (cotα)]  =(1/(sinα))[tan^(−1) (tan((π/2)−(α/2)))−tan^(−1) ((π/2)−α)]  =(1/(sinα))[(π/2)−(α/2)−(π/2)+α]  =(α/(2sinα))

Dr=(x+cosα)2+sin2αt=x+cosαcosα1+cosαdtt2+sin2α1sinαtan1(tsinα)cosα1+cosα=1sinα[tan1(1+cosαsinα)tan1(cosαsinα)]=1sinα[tan1(cotα2)tan1(cotα)]=1sinα[tan1(tan(π2α2))tan1(π2α)]=1sinα[π2α2π2+α]=α2sinα

Terms of Service

Privacy Policy

Contact: info@tinkutara.com