Question and Answers Forum

All Questions      Topic List

Differential Equation Questions

Previous in All Question      Next in All Question      

Previous in Differential Equation      Next in Differential Equation      

Question Number 6415 by sanusihammed last updated on 26/Jun/16

y^′ (t) = C + ((v(t)y(t))/(1 + v(t)t))    Here, t  is the variable   y(t) is the function  y^′ (t) is its first derivative   v(t) is an another function in the same variable  t   C  is a constant.    Find an arbitrary solution  (1)  you can either find any pair of   t  and  y(t)  as a solution to  this  (2) you can take any value for the function   v(t)  (2a)  v(t)  can be a constant function  (2b)  v(t)  can be a negative increasingly varying function.

$${y}^{'} \left({t}\right)\:=\:{C}\:+\:\frac{{v}\left({t}\right){y}\left({t}\right)}{\mathrm{1}\:+\:{v}\left({t}\right){t}} \\ $$$$ \\ $$$${Here},\:{t}\:\:{is}\:{the}\:{variable}\: \\ $$$${y}\left({t}\right)\:{is}\:{the}\:{function} \\ $$$${y}^{'} \left({t}\right)\:{is}\:{its}\:{first}\:{derivative}\: \\ $$$${v}\left({t}\right)\:{is}\:{an}\:{another}\:{function}\:{in}\:{the}\:{same}\:{variable}\:\:{t}\: \\ $$$${C}\:\:{is}\:{a}\:{constant}. \\ $$$$ \\ $$$${Find}\:{an}\:{arbitrary}\:{solution} \\ $$$$\left(\mathrm{1}\right)\:\:{you}\:{can}\:{either}\:{find}\:{any}\:{pair}\:{of}\:\:\:{t}\:\:{and}\:\:{y}\left({t}\right)\:\:{as}\:{a}\:{solution}\:{to} \\ $$$${this} \\ $$$$\left(\mathrm{2}\right)\:{you}\:{can}\:{take}\:{any}\:{value}\:{for}\:{the}\:{function}\:\:\:{v}\left({t}\right) \\ $$$$\left(\mathrm{2}{a}\right)\:\:{v}\left({t}\right)\:\:{can}\:{be}\:{a}\:{constant}\:{function} \\ $$$$\left(\mathrm{2}{b}\right)\:\:{v}\left({t}\right)\:\:{can}\:{be}\:{a}\:{negative}\:{increasingly}\:{varying}\:{function}. \\ $$

Answered by Chaeris27 last updated on 26/Jun/16

You should first put y(t) and y′(t) on the same side  y′(t) = C + ((v(t)y(t))/(1+v(t)t))  y(t)(D−I((v(t))/(1+v(t)t))) = C  Let u(t) = ((v(t))/(1+v(t)t)), then we have  y′(t)−u(t)y(t) = C  We can find a particular solution for C=0  y′(t) = u(t)y(t)  ((y′(t))/(y(t))) = u(t)  (d/dt) ln(y(t)) = u(t)  ln(y(t)) = ∫u(t)dt  y(t) = e^(∫u(t)dt)   substituting u(t) back we have  y(t) = e^(∫((v(t))/(1+v(t)t))dt)   To end just add C back to get general soljtion

$${You}\:{should}\:{first}\:{put}\:{y}\left({t}\right)\:{and}\:{y}'\left({t}\right)\:{on}\:{the}\:{same}\:{side} \\ $$$${y}'\left({t}\right)\:=\:{C}\:+\:\frac{{v}\left({t}\right){y}\left({t}\right)}{\mathrm{1}+{v}\left({t}\right){t}} \\ $$$${y}\left({t}\right)\left({D}−{I}\frac{{v}\left({t}\right)}{\mathrm{1}+{v}\left({t}\right){t}}\right)\:=\:{C} \\ $$$${Let}\:{u}\left({t}\right)\:=\:\frac{{v}\left({t}\right)}{\mathrm{1}+{v}\left({t}\right){t}},\:{then}\:{we}\:{have} \\ $$$${y}'\left({t}\right)−{u}\left({t}\right){y}\left({t}\right)\:=\:{C} \\ $$$${We}\:{can}\:{find}\:{a}\:{particular}\:{solution}\:{for}\:{C}=\mathrm{0} \\ $$$${y}'\left({t}\right)\:=\:{u}\left({t}\right){y}\left({t}\right) \\ $$$$\frac{{y}'\left({t}\right)}{{y}\left({t}\right)}\:=\:{u}\left({t}\right) \\ $$$$\frac{{d}}{{dt}}\:{ln}\left({y}\left({t}\right)\right)\:=\:{u}\left({t}\right) \\ $$$${ln}\left({y}\left({t}\right)\right)\:=\:\int{u}\left({t}\right){dt} \\ $$$${y}\left({t}\right)\:=\:{e}^{\int{u}\left({t}\right){dt}} \\ $$$${substituting}\:{u}\left({t}\right)\:{back}\:{we}\:{have} \\ $$$${y}\left({t}\right)\:=\:{e}^{\int\frac{{v}\left({t}\right)}{\mathrm{1}+{v}\left({t}\right){t}}{dt}} \\ $$$${To}\:{end}\:{just}\:{add}\:{C}\:{back}\:{to}\:{get}\:{general}\:{soljtion} \\ $$

Commented by sanusihammed last updated on 26/Jun/16

Thanks so much

$${Thanks}\:{so}\:{much} \\ $$

Commented by Chaeris27 last updated on 26/Jun/16

I have checked and my solution is  correct but adding C back is hard :    Firstly, the general solution for C=0  is :  y(t) = c_1 ∙e^(∫((v(t))/(1+v(t)t))dt)   It appears that if you try to cancel out  the variable part of the equation to get  to  simpler problem you have  e^(−∫((v(t))/(1+v(t)t))dt)  y(t) = c_1   e^(−∫((v(t))/(1+v(t)t))dt) y′(t) = ((v(t))/(1+v(t)t))c_1   so if you multiply the original equation  by e^(−∫((v(t))/(1+v(t)t))dt)  you get  e^(−∫((v(t))/(1+v(t)t))dt) y′(t) − e^(−∫((v(t))/(1+v(t)t))dt) ((v(t))/(1+v(t)t))y(t) = Ce^(−∫((v(t))/(1+v(t)t))dt)   Or with u(t) = ((v(t))/(1+v(t)t))  e^(−∫u(t)dt) y′(t) + (−u(t)e^(−∫u(t)dt)  y(t)) = e^(−∫u(t)dt) C  Let U(t) = e^(−∫u(t)dt)  then U′(t) = −u(t)e^(−∫u(t)dt)   which we can substitute in our equation  U(t)y′(t)+U′(t)y(t) = (d/dt)(U(t)y(t))  (d/dt)(U(t)y(t)) = e^(−∫u(t)dt) C  U(t)y(t) = ∫e^(−∫u(t)dt) C dt + c_1   = C∙∫e^(−∫u(t)dt)  dt + c_1   (c_1  comes from the fact that we have  just integrated, it can be any number)  Finally divide by U(t) to get   y(t) = (1/(U(t)))(C∙∫e^(−∫u(t)dt)  dt + c_1 )  Substitute u(t) and U(t) (note that  (1/(U(t))) = (1/e^(−∫u(t)dt) ) = e^(∫u(t)dt)  )    y(t) = e^(∫((v(t))/(1+v(t)t))dt) ∙(C∙∫e^(−∫((v(t))/(1+v(t)t))dt)  dt + c_1 )  So you have right here the most  general solution available

$${I}\:{have}\:{checked}\:{and}\:{my}\:{solution}\:{is} \\ $$$${correct}\:{but}\:{adding}\:{C}\:{back}\:{is}\:{hard}\:: \\ $$$$ \\ $$$${Firstly},\:{the}\:{general}\:{solution}\:{for}\:{C}=\mathrm{0} \\ $$$${is}\:: \\ $$$${y}\left({t}\right)\:=\:{c}_{\mathrm{1}} \centerdot{e}^{\int\frac{{v}\left({t}\right)}{\mathrm{1}+{v}\left({t}\right){t}}{dt}} \\ $$$${It}\:{appears}\:{that}\:{if}\:{you}\:{try}\:{to}\:{cancel}\:{out} \\ $$$${the}\:{variable}\:{part}\:{of}\:{the}\:{equation}\:{to}\:{get} \\ $$$${to}\:\:{simpler}\:{problem}\:{you}\:{have} \\ $$$${e}^{−\int\frac{{v}\left({t}\right)}{\mathrm{1}+{v}\left({t}\right){t}}{dt}} \:{y}\left({t}\right)\:=\:{c}_{\mathrm{1}} \\ $$$${e}^{−\int\frac{{v}\left({t}\right)}{\mathrm{1}+{v}\left({t}\right){t}}{dt}} {y}'\left({t}\right)\:=\:\frac{{v}\left({t}\right)}{\mathrm{1}+{v}\left({t}\right){t}}{c}_{\mathrm{1}} \\ $$$${so}\:{if}\:{you}\:{multiply}\:{the}\:{original}\:{equation} \\ $$$${by}\:{e}^{−\int\frac{{v}\left({t}\right)}{\mathrm{1}+{v}\left({t}\right){t}}{dt}} \:{you}\:{get} \\ $$$${e}^{−\int\frac{{v}\left({t}\right)}{\mathrm{1}+{v}\left({t}\right){t}}{dt}} {y}'\left({t}\right)\:−\:{e}^{−\int\frac{{v}\left({t}\right)}{\mathrm{1}+{v}\left({t}\right){t}}{dt}} \frac{{v}\left({t}\right)}{\mathrm{1}+{v}\left({t}\right){t}}{y}\left({t}\right)\:=\:{Ce}^{−\int\frac{{v}\left({t}\right)}{\mathrm{1}+{v}\left({t}\right){t}}{dt}} \\ $$$${Or}\:{with}\:{u}\left({t}\right)\:=\:\frac{{v}\left({t}\right)}{\mathrm{1}+{v}\left({t}\right){t}} \\ $$$${e}^{−\int{u}\left({t}\right){dt}} {y}'\left({t}\right)\:+\:\left(−{u}\left({t}\right){e}^{−\int{u}\left({t}\right){dt}} \:{y}\left({t}\right)\right)\:=\:{e}^{−\int{u}\left({t}\right){dt}} {C} \\ $$$${Let}\:{U}\left({t}\right)\:=\:{e}^{−\int{u}\left({t}\right){dt}} \:{then}\:{U}'\left({t}\right)\:=\:−{u}\left({t}\right){e}^{−\int{u}\left({t}\right){dt}} \\ $$$${which}\:{we}\:{can}\:{substitute}\:{in}\:{our}\:{equation} \\ $$$${U}\left({t}\right){y}'\left({t}\right)+{U}'\left({t}\right){y}\left({t}\right)\:=\:\frac{{d}}{{dt}}\left({U}\left({t}\right){y}\left({t}\right)\right) \\ $$$$\frac{{d}}{{dt}}\left({U}\left({t}\right){y}\left({t}\right)\right)\:=\:{e}^{−\int{u}\left({t}\right){dt}} {C} \\ $$$${U}\left({t}\right){y}\left({t}\right)\:=\:\int{e}^{−\int{u}\left({t}\right){dt}} {C}\:{dt}\:+\:{c}_{\mathrm{1}} \\ $$$$=\:{C}\centerdot\int{e}^{−\int{u}\left({t}\right){dt}} \:{dt}\:+\:{c}_{\mathrm{1}} \\ $$$$\left({c}_{\mathrm{1}} \:{comes}\:{from}\:{the}\:{fact}\:{that}\:{we}\:{have}\right. \\ $$$$\left.{just}\:{integrated},\:{it}\:{can}\:{be}\:{any}\:{number}\right) \\ $$$${Finally}\:{divide}\:{by}\:{U}\left({t}\right)\:{to}\:{get}\: \\ $$$${y}\left({t}\right)\:=\:\frac{\mathrm{1}}{{U}\left({t}\right)}\left({C}\centerdot\int{e}^{−\int{u}\left({t}\right){dt}} \:{dt}\:+\:{c}_{\mathrm{1}} \right) \\ $$$${Substitute}\:{u}\left({t}\right)\:{and}\:{U}\left({t}\right)\:\left({note}\:{that}\right. \\ $$$$\left.\frac{\mathrm{1}}{{U}\left({t}\right)}\:=\:\frac{\mathrm{1}}{{e}^{−\int{u}\left({t}\right){dt}} }\:=\:{e}^{\int{u}\left({t}\right){dt}} \:\right) \\ $$$$ \\ $$$${y}\left({t}\right)\:=\:{e}^{\int\frac{{v}\left({t}\right)}{\mathrm{1}+{v}\left({t}\right){t}}{dt}} \centerdot\left({C}\centerdot\int{e}^{−\int\frac{{v}\left({t}\right)}{\mathrm{1}+{v}\left({t}\right){t}}{dt}} \:{dt}\:+\:{c}_{\mathrm{1}} \right) \\ $$$${So}\:{you}\:{have}\:{right}\:{here}\:{the}\:{most} \\ $$$${general}\:{solution}\:{available} \\ $$

Commented by sanusihammed last updated on 26/Jun/16

Great. i really appreciate.

$${Great}.\:{i}\:{really}\:{appreciate}. \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com