Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 64150 by mathmax by abdo last updated on 14/Jul/19

calculate ∫_(−∞) ^(+∞)    (dx/((x^2 +1)(x^2 +2)(x^2 +3)))

calculate+dx(x2+1)(x2+2)(x2+3)

Commented by mathmax by abdo last updated on 14/Jul/19

residus method let f(z)=(1/((z^2 +1)(z^2  +2)(z^2  +3)))  we have f(z) =(1/((z−i)(z+i)(z−i(√2))(z+i(√2))(z−i(√3))(z+i(√3))))  so the poles of f are +^− i ,+^− i(√2)and +^− i(√3)   residus theorem give  ∫_(−∞) ^(+∞) f−z)dz =2iπ {Res(f,i)+Res(f,i(√2)) +Res(f,i(√3))}  Res(f,i) =lim_(z→i) (z−i)f(z) =(1/(2i(−1+2)(−1+3))) =(1/(4i))  Res(f,i(√2))=lim_(z→i(√2))   (z−i(√2))f(z) =(1/(2i(√2)(−2+1)(−2+3)))  =(1/(−2i(√2)))  Res(f,i(√3)) =lim_(z→i(√3))    (z−i(√3))f(z)=(1/(2i(√3)(−3+1)(−3+2)))  =(1/(4i(√3))) ⇒∫_(−∞) ^(+∞) f(z)dz =2iπ{(1/(4i)) −(1/(2i(√2))) +(1/(4i(√3)))}  =(π/2) −(π/(√2)) +(π/(2(√3)))  ⇒ I =(π/2) −(π/(√2)) +(π/(√3)) .

residusmethodletf(z)=1(z2+1)(z2+2)(z2+3)wehavef(z)=1(zi)(z+i)(zi2)(z+i2)(zi3)(z+i3)sothepolesoffare+i,+i2and+i3residustheoremgive+fz)dz=2iπ{Res(f,i)+Res(f,i2)+Res(f,i3)}Res(f,i)=limzi(zi)f(z)=12i(1+2)(1+3)=14iRes(f,i2)=limzi2(zi2)f(z)=12i2(2+1)(2+3)=12i2Res(f,i3)=limzi3(zi3)f(z)=12i3(3+1)(3+2)=14i3+f(z)dz=2iπ{14i12i2+14i3}=π2π2+π23I=π2π2+π3.

Commented by mathmax by abdo last updated on 14/Jul/19

error of typo   I =(π/2)−(π/(√2)) +(π/(2(√3))) .

erroroftypoI=π2π2+π23.

Answered by ajfour last updated on 14/Jul/19

let x^2 +2=t  (1/((t−1)t(t+1)))=((1/2)/(t−1))−(1/t)+((1/2)/(t+1))  I=(1/2)∫(dx/(x^2 +1))−∫(dx/(x^2 +2))+(1/2)∫(dx/(x^2 +3))     =(1/2)tan^(−1) x−(1/(√2))tan^(−1) (x/(√2))+(1/(2(√3)))tan^(−1) (x/(√3))+c    with limits     I=(π/2)−(π/(√2))+(π/(2(√3)))       =(((3−3(√2)+(√3))/6))π .

letx2+2=t1(t1)t(t+1)=1/2t11t+1/2t+1I=12dxx2+1dxx2+2+12dxx2+3=12tan1x12tan1x2+123tan1x3+cwithlimitsI=π2π2+π23=(332+36)π.

Commented by mathmax by abdo last updated on 14/Jul/19

thank you sir ajfour your answer is correct.

thankyousirajfouryouransweriscorrect.

Terms of Service

Privacy Policy

Contact: info@tinkutara.com