Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 64150 by mathmax by abdo last updated on 14/Jul/19

calculate ∫_(−∞) ^(+∞)    (dx/((x^2 +1)(x^2 +2)(x^2 +3)))

$${calculate}\:\int_{−\infty} ^{+\infty} \:\:\:\frac{{dx}}{\left({x}^{\mathrm{2}} +\mathrm{1}\right)\left({x}^{\mathrm{2}} +\mathrm{2}\right)\left({x}^{\mathrm{2}} +\mathrm{3}\right)} \\ $$

Commented by mathmax by abdo last updated on 14/Jul/19

residus method let f(z)=(1/((z^2 +1)(z^2  +2)(z^2  +3)))  we have f(z) =(1/((z−i)(z+i)(z−i(√2))(z+i(√2))(z−i(√3))(z+i(√3))))  so the poles of f are +^− i ,+^− i(√2)and +^− i(√3)   residus theorem give  ∫_(−∞) ^(+∞) f−z)dz =2iπ {Res(f,i)+Res(f,i(√2)) +Res(f,i(√3))}  Res(f,i) =lim_(z→i) (z−i)f(z) =(1/(2i(−1+2)(−1+3))) =(1/(4i))  Res(f,i(√2))=lim_(z→i(√2))   (z−i(√2))f(z) =(1/(2i(√2)(−2+1)(−2+3)))  =(1/(−2i(√2)))  Res(f,i(√3)) =lim_(z→i(√3))    (z−i(√3))f(z)=(1/(2i(√3)(−3+1)(−3+2)))  =(1/(4i(√3))) ⇒∫_(−∞) ^(+∞) f(z)dz =2iπ{(1/(4i)) −(1/(2i(√2))) +(1/(4i(√3)))}  =(π/2) −(π/(√2)) +(π/(2(√3)))  ⇒ I =(π/2) −(π/(√2)) +(π/(√3)) .

$${residus}\:{method}\:{let}\:{f}\left({z}\right)=\frac{\mathrm{1}}{\left({z}^{\mathrm{2}} +\mathrm{1}\right)\left({z}^{\mathrm{2}} \:+\mathrm{2}\right)\left({z}^{\mathrm{2}} \:+\mathrm{3}\right)} \\ $$$${we}\:{have}\:{f}\left({z}\right)\:=\frac{\mathrm{1}}{\left({z}−{i}\right)\left({z}+{i}\right)\left({z}−{i}\sqrt{\mathrm{2}}\right)\left({z}+{i}\sqrt{\mathrm{2}}\right)\left({z}−{i}\sqrt{\mathrm{3}}\right)\left({z}+{i}\sqrt{\mathrm{3}}\right)} \\ $$$${so}\:{the}\:{poles}\:{of}\:{f}\:{are}\:\overset{−} {+}{i}\:,\overset{−} {+}{i}\sqrt{\mathrm{2}}{and}\:\overset{−} {+}{i}\sqrt{\mathrm{3}}\:\:\:{residus}\:{theorem}\:{give} \\ $$$$\left.\int_{−\infty} ^{+\infty} {f}−{z}\right){dz}\:=\mathrm{2}{i}\pi\:\left\{{Res}\left({f},{i}\right)+{Res}\left({f},{i}\sqrt{\mathrm{2}}\right)\:+{Res}\left({f},{i}\sqrt{\mathrm{3}}\right)\right\} \\ $$$${Res}\left({f},{i}\right)\:={lim}_{{z}\rightarrow{i}} \left({z}−{i}\right){f}\left({z}\right)\:=\frac{\mathrm{1}}{\mathrm{2}{i}\left(−\mathrm{1}+\mathrm{2}\right)\left(−\mathrm{1}+\mathrm{3}\right)}\:=\frac{\mathrm{1}}{\mathrm{4}{i}} \\ $$$${Res}\left({f},{i}\sqrt{\mathrm{2}}\right)={lim}_{{z}\rightarrow{i}\sqrt{\mathrm{2}}} \:\:\left({z}−{i}\sqrt{\mathrm{2}}\right){f}\left({z}\right)\:=\frac{\mathrm{1}}{\mathrm{2}{i}\sqrt{\mathrm{2}}\left(−\mathrm{2}+\mathrm{1}\right)\left(−\mathrm{2}+\mathrm{3}\right)} \\ $$$$=\frac{\mathrm{1}}{−\mathrm{2}{i}\sqrt{\mathrm{2}}} \\ $$$${Res}\left({f},{i}\sqrt{\mathrm{3}}\right)\:={lim}_{{z}\rightarrow{i}\sqrt{\mathrm{3}}} \:\:\:\left({z}−{i}\sqrt{\mathrm{3}}\right){f}\left({z}\right)=\frac{\mathrm{1}}{\mathrm{2}{i}\sqrt{\mathrm{3}}\left(−\mathrm{3}+\mathrm{1}\right)\left(−\mathrm{3}+\mathrm{2}\right)} \\ $$$$=\frac{\mathrm{1}}{\mathrm{4}{i}\sqrt{\mathrm{3}}}\:\Rightarrow\int_{−\infty} ^{+\infty} {f}\left({z}\right){dz}\:=\mathrm{2}{i}\pi\left\{\frac{\mathrm{1}}{\mathrm{4}{i}}\:−\frac{\mathrm{1}}{\mathrm{2}{i}\sqrt{\mathrm{2}}}\:+\frac{\mathrm{1}}{\mathrm{4}{i}\sqrt{\mathrm{3}}}\right\} \\ $$$$=\frac{\pi}{\mathrm{2}}\:−\frac{\pi}{\sqrt{\mathrm{2}}}\:+\frac{\pi}{\mathrm{2}\sqrt{\mathrm{3}}}\:\:\Rightarrow\:{I}\:=\frac{\pi}{\mathrm{2}}\:−\frac{\pi}{\sqrt{\mathrm{2}}}\:+\frac{\pi}{\sqrt{\mathrm{3}}}\:. \\ $$

Commented by mathmax by abdo last updated on 14/Jul/19

error of typo   I =(π/2)−(π/(√2)) +(π/(2(√3))) .

$${error}\:{of}\:{typo}\:\:\:{I}\:=\frac{\pi}{\mathrm{2}}−\frac{\pi}{\sqrt{\mathrm{2}}}\:+\frac{\pi}{\mathrm{2}\sqrt{\mathrm{3}}}\:. \\ $$

Answered by ajfour last updated on 14/Jul/19

let x^2 +2=t  (1/((t−1)t(t+1)))=((1/2)/(t−1))−(1/t)+((1/2)/(t+1))  I=(1/2)∫(dx/(x^2 +1))−∫(dx/(x^2 +2))+(1/2)∫(dx/(x^2 +3))     =(1/2)tan^(−1) x−(1/(√2))tan^(−1) (x/(√2))+(1/(2(√3)))tan^(−1) (x/(√3))+c    with limits     I=(π/2)−(π/(√2))+(π/(2(√3)))       =(((3−3(√2)+(√3))/6))π .

$${let}\:{x}^{\mathrm{2}} +\mathrm{2}={t} \\ $$$$\frac{\mathrm{1}}{\left({t}−\mathrm{1}\right){t}\left({t}+\mathrm{1}\right)}=\frac{\mathrm{1}/\mathrm{2}}{{t}−\mathrm{1}}−\frac{\mathrm{1}}{{t}}+\frac{\mathrm{1}/\mathrm{2}}{{t}+\mathrm{1}} \\ $$$${I}=\frac{\mathrm{1}}{\mathrm{2}}\int\frac{{dx}}{{x}^{\mathrm{2}} +\mathrm{1}}−\int\frac{{dx}}{{x}^{\mathrm{2}} +\mathrm{2}}+\frac{\mathrm{1}}{\mathrm{2}}\int\frac{{dx}}{{x}^{\mathrm{2}} +\mathrm{3}} \\ $$$$\:\:\:=\frac{\mathrm{1}}{\mathrm{2}}\mathrm{tan}^{−\mathrm{1}} {x}−\frac{\mathrm{1}}{\sqrt{\mathrm{2}}}\mathrm{tan}^{−\mathrm{1}} \frac{{x}}{\sqrt{\mathrm{2}}}+\frac{\mathrm{1}}{\mathrm{2}\sqrt{\mathrm{3}}}\mathrm{tan}^{−\mathrm{1}} \frac{{x}}{\sqrt{\mathrm{3}}}+{c} \\ $$$$\:\:{with}\:{limits} \\ $$$$\:\:\:{I}=\frac{\pi}{\mathrm{2}}−\frac{\pi}{\sqrt{\mathrm{2}}}+\frac{\pi}{\mathrm{2}\sqrt{\mathrm{3}}} \\ $$$$\:\:\:\:\:=\left(\frac{\mathrm{3}−\mathrm{3}\sqrt{\mathrm{2}}+\sqrt{\mathrm{3}}}{\mathrm{6}}\right)\pi\:. \\ $$

Commented by mathmax by abdo last updated on 14/Jul/19

thank you sir ajfour your answer is correct.

$${thank}\:{you}\:{sir}\:{ajfour}\:{your}\:{answer}\:{is}\:{correct}. \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com