Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 64160 by mathmax by abdo last updated on 14/Jul/19

let f(x) =∫_0 ^1  (dt/(x +2^t ))  with x>0  1) determine a explicit form for f(x)  2) determine also g(x)=∫_0 ^1  (dt/((x+2^x )^2 ))  3) give f^((n)) (x) at form of integral   4) calculate ∫_0 ^1   (dt/(1+2^t )) and ∫_0 ^1  (dt/((1+2^t )^2 ))

letf(x)=01dtx+2twithx>0 1)determineaexplicitformforf(x) 2)determinealsog(x)=01dt(x+2x)2 3)givef(n)(x)atformofintegral 4)calculate01dt1+2tand01dt(1+2t)2

Commented bymathmax by abdo last updated on 14/Jul/19

1)we have f(x)=∫_0 ^1 (dt/(x+2^t ))     (x>0) changement 2^t =u give   e^(tln2) =u ⇒tln(2)=lnu ⇒t=((ln(u))/(ln(2))) ⇒f(x) =∫_1 ^2    (du/(ln(2)u(x+u)))  =(1/(ln(2))) (1/x)∫_1 ^2 {(1/u)−(1/(x+u))}du =(1/(xln(2)))[ln((u/(x+u)))]_1 ^2   =(1/(xln(2))){ln((2/(x+2)))−ln((1/(x+1)))}=(1/(xln(2))){ln2−ln(x+2)+ln(x+1)}  f(x)=(1/x) +((ln(((x+1)/(x+2))))/(xln(2)))

1)wehavef(x)=01dtx+2t(x>0)changement2t=ugive etln2=utln(2)=lnut=ln(u)ln(2)f(x)=12duln(2)u(x+u) =1ln(2)1x12{1u1x+u}du=1xln(2)[ln(ux+u)]12 =1xln(2){ln(2x+2)ln(1x+1)}=1xln(2){ln2ln(x+2)+ln(x+1)} f(x)=1x+ln(x+1x+2)xln(2)

Commented bymathmax by abdo last updated on 14/Jul/19

2) we have f^′ (x) =−∫_0 ^1   (dt/((x+2^t )^2 )) =−g(x) ⇒g(x)=−f^′ (x)  we have f(x)=(1/x){1 +((ln(x+1)−ln(x+2))/(ln2))} ⇒  f^′ (x) =−(1/x^2 ){1+((ln(x+1)−ln(x+2))/(ln2))}+(1/x){(1/((x+1)ln2))−(1/((x+2)ln(2)))}  ⇒g(x)=(1/x^2 ){1+((ln(x+1)−ln(x+2))/(ln2))}−(1/x){(1/((x+1)ln2))−(1/((x+2)ln2))}

2)wehavef(x)=01dt(x+2t)2=g(x)g(x)=f(x) wehavef(x)=1x{1+ln(x+1)ln(x+2)ln2} f(x)=1x2{1+ln(x+1)ln(x+2)ln2}+1x{1(x+1)ln21(x+2)ln(2)} g(x)=1x2{1+ln(x+1)ln(x+2)ln2}1x{1(x+1)ln21(x+2)ln2}

Commented bymathmax by abdo last updated on 14/Jul/19

3)we have f^((n)) (x) =∫_0 ^1  (∂^n /∂x^n )((1/(x+2^t )))dt  =∫_0 ^1 (((−1)^n n!)/((x+2^t )^(n+1) ))dt =(−1)^n n! ∫_0 ^1   (dt/((x+2^t )^(n+1) ))

3)wehavef(n)(x)=01nxn(1x+2t)dt =01(1)nn!(x+2t)n+1dt=(1)nn!01dt(x+2t)n+1

Commented bymathmax by abdo last updated on 14/Jul/19

4) ∫_0 ^1  (dt/(1+2^t )) =f(1) =1 +((ln((2/3)))/(ln(2))) =1+((ln(2)−ln(3))/(ln2)) =2−((ln(3))/(ln2))

4)01dt1+2t=f(1)=1+ln(23)ln(2)=1+ln(2)ln(3)ln2=2ln(3)ln2

Commented bymathmax by abdo last updated on 14/Jul/19

∫_0 ^1  (dt/((1+2^t )^2 )) =g(1) =1+((ln(2)−ln(3))/(ln2))−((1/(2ln2))−(1/(3ln2)))  =2 −((ln(3))/(ln2)) +((1/3)−(1/2))(1/(ln(2))) =2−((ln3)/(ln2))−(1/(6ln2))

01dt(1+2t)2=g(1)=1+ln(2)ln(3)ln2(12ln213ln2) =2ln(3)ln2+(1312)1ln(2)=2ln3ln216ln2

Answered by Eminem last updated on 14/Jul/19

1)    let u=2^t      dt=(du/(uln(2)))  f(x)=∫_1 ^2 (du/(uln(2)(x+u)))=∫_1 ^2 (du/(xuln(2)))−∫_1 ^2 (du/(xln(2)(x+u)))=(1/x)−(1/(xln(2)))[ln(x+2)−ln(x+1)]

1)letu=2tdt=duuln(2) f(x)=12duuln(2)(x+u)=12duxuln(2)12duxln(2)(x+u)=1x1xln(2)[ln(x+2)ln(x+1)]

Answered by Eminem last updated on 14/Jul/19

2) Same idea its g(x)=∫(dt/((x+2^t )^2 ))?  f^((n))  libneiz formula explicite   withe integral just swithe derivation withe integral  f^n (x)=∫(d/dx^n )(dt/((x+2^t )))=∫(((−1)^n (n)!)/((x+2^t )^(n+1) ))dt  4.put  x=1in f(x) 2 nd x=1 in f^′ (x)

2)Sameideaitsg(x)=dt(x+2t)2? f(n)libneizformulaexplicite witheintegraljustswithederivationwitheintegral fn(x)=ddxndt(x+2t)=(1)n(n)!(x+2t)n+1dt 4.putx=1inf(x)2ndx=1inf(x)

Terms of Service

Privacy Policy

Contact: info@tinkutara.com