All Questions Topic List
Integration Questions
Previous in All Question Next in All Question
Previous in Integration Next in Integration
Question Number 64200 by aliesam last updated on 15/Jul/19
Commented by mathmax by abdo last updated on 15/Jul/19
letI=∫01x−1lnxdxchangementlnx=−tgivex=e−tI=−∫0∞e−t−1−t(−e−t)dt=−∫0∞e−2t−e−ttdtletintroducetheparametricfunctionf(x)=∫0∞e−2t−e−tte−xtdtwithx>0wehavef′(x)=−∫0∞(e−2t−e−t)e−xtdt=−∫0∞{e−(x+2)t−e−(x+1)t}dt=∫0∞(e−(x+1)t−e−(x+2)t)dt=[−1x+1e−(x+1)t+1x+2e−(x+2)t]0+∞=1x+1−1x+2⇒f(x)=ln(x+1)−ln(x+2)+c=ln(x+1x+2)+c∃m>0/∣f(x)∣⩽m∫0∞e−xtdt=mx→0(x→+∞)c=limx→+∞(f(x)−ln(x+1x+2))=0f(x)=ln(x+1x+2)I=limx→0−f(x)=ln(2).
Answered by Hope last updated on 15/Jul/19
tricky∫01xa−1lnx=f(a)dfda=∫01∂∂axa−1lnxdx=∫01xalnxlnxdx∫01xadx=∣xa+1a+1∣01=1a+1dfda=1a+1df=daa+1f(a)=ln(a+1)+cwhena=0f(0)=0soc=0f(a)=ln(a+1)soansisf(1)=ln2
Terms of Service
Privacy Policy
Contact: info@tinkutara.com