Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 64200 by aliesam last updated on 15/Jul/19

Commented by mathmax by abdo last updated on 15/Jul/19

let I =∫_0 ^1  ((x−1)/(lnx))dx changement lnx=−t give x=e^(−t)   I =−∫_0 ^∞   ((e^(−t) −1)/(−t))(−e^(−t) )dt  =−∫_0 ^∞  ((e^(−2t) −e^(−t) )/t)dt  let introduce the parametric function  f(x) =∫_0 ^∞  ((e^(−2t) −e^(−t) )/t) e^(−xt) dt  with x>0  we have   f^′ (x) =−∫_0 ^∞   (e^(−2t) −e^(−t) )e^(−xt)  dt =−∫_0 ^∞ {  e^(−(x+2)t) −e^(−(x+1)t) }dt  =∫_0 ^∞ (e^(−(x+1)t) −e^(−(x+2)t) )dt =[−(1/(x+1))e^(−(x+1)t) +(1/(x+2))e^(−(x+2)t) ]_0 ^(+∞)   =(1/(x+1))−(1/(x+2)) ⇒f(x)=ln(x+1)−ln(x+2)+c=ln(((x+1)/(x+2))) +c  ∃m>0 /∣f(x)∣≤m∫_0 ^∞  e^(−xt) dt =(m/x) →0 (x→+∞)   c=lim_(x→+∞) (f(x)−ln(((x+1)/(x+2))))=0  f(x)=ln(((x+1)/(x+2)))  I =lim_(x→0)   −f(x) = ln(2) .

$${let}\:{I}\:=\int_{\mathrm{0}} ^{\mathrm{1}} \:\frac{{x}−\mathrm{1}}{{lnx}}{dx}\:{changement}\:{lnx}=−{t}\:{give}\:{x}={e}^{−{t}} \\ $$$${I}\:=−\int_{\mathrm{0}} ^{\infty} \:\:\frac{{e}^{−{t}} −\mathrm{1}}{−{t}}\left(−{e}^{−{t}} \right){dt} \\ $$$$=−\int_{\mathrm{0}} ^{\infty} \:\frac{{e}^{−\mathrm{2}{t}} −{e}^{−{t}} }{{t}}{dt}\:\:{let}\:{introduce}\:{the}\:{parametric}\:{function} \\ $$$${f}\left({x}\right)\:=\int_{\mathrm{0}} ^{\infty} \:\frac{{e}^{−\mathrm{2}{t}} −{e}^{−{t}} }{{t}}\:{e}^{−{xt}} {dt}\:\:{with}\:{x}>\mathrm{0}\:\:{we}\:{have}\: \\ $$$${f}^{'} \left({x}\right)\:=−\int_{\mathrm{0}} ^{\infty} \:\:\left({e}^{−\mathrm{2}{t}} −{e}^{−{t}} \right){e}^{−{xt}} \:{dt}\:=−\int_{\mathrm{0}} ^{\infty} \left\{\:\:{e}^{−\left({x}+\mathrm{2}\right){t}} −{e}^{−\left({x}+\mathrm{1}\right){t}} \right\}{dt} \\ $$$$=\int_{\mathrm{0}} ^{\infty} \left({e}^{−\left({x}+\mathrm{1}\right){t}} −{e}^{−\left({x}+\mathrm{2}\right){t}} \right){dt}\:=\left[−\frac{\mathrm{1}}{{x}+\mathrm{1}}{e}^{−\left({x}+\mathrm{1}\right){t}} +\frac{\mathrm{1}}{{x}+\mathrm{2}}\mathrm{e}^{−\left(\mathrm{x}+\mathrm{2}\right)\mathrm{t}} \right]_{\mathrm{0}} ^{+\infty} \\ $$$$=\frac{\mathrm{1}}{{x}+\mathrm{1}}−\frac{\mathrm{1}}{{x}+\mathrm{2}}\:\Rightarrow{f}\left({x}\right)={ln}\left({x}+\mathrm{1}\right)−{ln}\left({x}+\mathrm{2}\right)+{c}={ln}\left(\frac{{x}+\mathrm{1}}{{x}+\mathrm{2}}\right)\:+{c} \\ $$$$\exists{m}>\mathrm{0}\:/\mid{f}\left({x}\right)\mid\leqslant{m}\int_{\mathrm{0}} ^{\infty} \:{e}^{−{xt}} {dt}\:=\frac{{m}}{{x}}\:\rightarrow\mathrm{0}\:\left({x}\rightarrow+\infty\right)\: \\ $$$${c}={lim}_{{x}\rightarrow+\infty} \left({f}\left({x}\right)−{ln}\left(\frac{{x}+\mathrm{1}}{{x}+\mathrm{2}}\right)\right)=\mathrm{0}\:\:{f}\left({x}\right)={ln}\left(\frac{{x}+\mathrm{1}}{{x}+\mathrm{2}}\right) \\ $$$${I}\:={lim}_{{x}\rightarrow\mathrm{0}} \:\:−{f}\left({x}\right)\:=\:{ln}\left(\mathrm{2}\right)\:. \\ $$

Answered by Hope last updated on 15/Jul/19

tricky  ∫_0 ^1 ((x^a −1)/(lnx))=f(a)  (df/da)=∫_0 ^1 (∂/∂a)((x^a −1)/(lnx))dx  =∫_0 ^1 ((x^a lnx)/(lnx))dx  ∫_0 ^1 x^a dx  =∣(x^(a+1) /(a+1))∣_0 ^1 =(1/(a+1))  (df/da)=(1/(a+1))  df=(da/(a+1))  f(a)=ln(a+1)+c  when a=0       f(0)=0   so c=0  f(a)=ln(a+1)  so ans is f(1)  =ln2

$${tricky} \\ $$$$\int_{\mathrm{0}} ^{\mathrm{1}} \frac{{x}^{{a}} −\mathrm{1}}{{lnx}}={f}\left({a}\right) \\ $$$$\frac{{df}}{{da}}=\int_{\mathrm{0}} ^{\mathrm{1}} \frac{\partial}{\partial{a}}\frac{{x}^{{a}} −\mathrm{1}}{{lnx}}{dx} \\ $$$$=\int_{\mathrm{0}} ^{\mathrm{1}} \frac{{x}^{{a}} {lnx}}{{lnx}}{dx} \\ $$$$\int_{\mathrm{0}} ^{\mathrm{1}} {x}^{{a}} {dx} \\ $$$$=\mid\frac{{x}^{{a}+\mathrm{1}} }{{a}+\mathrm{1}}\mid_{\mathrm{0}} ^{\mathrm{1}} =\frac{\mathrm{1}}{{a}+\mathrm{1}} \\ $$$$\frac{{df}}{{da}}=\frac{\mathrm{1}}{{a}+\mathrm{1}} \\ $$$${df}=\frac{{da}}{{a}+\mathrm{1}} \\ $$$${f}\left({a}\right)={ln}\left({a}+\mathrm{1}\right)+{c} \\ $$$${when}\:{a}=\mathrm{0}\:\:\:\:\:\:\:{f}\left(\mathrm{0}\right)=\mathrm{0}\:\:\:{so}\:{c}=\mathrm{0} \\ $$$${f}\left({a}\right)={ln}\left({a}+\mathrm{1}\right) \\ $$$${so}\:{ans}\:{is}\:{f}\left(\mathrm{1}\right) \\ $$$$={ln}\mathrm{2} \\ $$$$ \\ $$$$ \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com