Question and Answers Forum

All Questions      Topic List

None Questions

Previous in All Question      Next in All Question      

Previous in None      Next in None      

Question Number 64201 by Prithwish sen last updated on 15/Jul/19

Find all positive solutions   x+y+z = 1  x^3 +y^3 + z^3  + xyz = x^4  + y^4  + z^4  +1

Findallpositivesolutionsx+y+z=1x3+y3+z3+xyz=x4+y4+z4+1

Answered by MJS last updated on 15/Jul/19

z=1−x−y  ⇒  y^4 +2(x−1)y^3 +((6x^2 −8x+3)/2)y^2 +((4x^3 −8x^2 +5x−1)/2)y+((2x^4 −4x^3 +3x^2 −x+1)/2)=0  y=t−((x−1)/2)  t^4 +((x(3x−2))/2)t^2 +((9x^4 −12x^3 +4x^2 +7)/(16))=0  ⇒ t^2 =−((x(3x−2))/4)±((√7)/4)i  ⇒ no real solutions at all

z=1xyy4+2(x1)y3+6x28x+32y2+4x38x2+5x12y+2x44x3+3x2x+12=0y=tx12t4+x(3x2)2t2+9x412x3+4x2+716=0t2=x(3x2)4±74inorealsolutionsatall

Commented by MJS last updated on 15/Jul/19

the maximum of  −x^4 −y^4 −z^4 −1+x^3 +y^3 +z^3 +xyz  is −(7/8)

themaximumofx4y4z41+x3+y3+z3+xyzis78

Commented by Prithwish sen last updated on 15/Jul/19

thank you sir

thankyousir

Answered by ajfour last updated on 16/Jul/19

(x+y+z)^4 =x^4 +(y+z)^4 +4x^3 (y+z)                +6x^2 (y+z)^2 +4x(y+z)^3   ⇒ x^4 +y^4 +z^4 +4yz[(y+z)^2 −2yz)    +6y^2 z^2 +6x^2 (y+z)^2 +4x(y+z)^3 =1    or  since  y+z=1−x  ⇒  x^4 +y^4 +z^4 −2y^2 z^2 +6x^2 (1−x)^2         +4x(1−x)^3 =1            ________________________  ⇒  2y^2 z^2 = x^4 +y^4 +z^4 +(2x^2 +4x)(1−x)^2 −1     ________________________                ......(i)  (x+y+z)^3 =x^3 +y^3 +z^3    +3[x^2 (y+z)+y^2 (z+x)+z^2 (x+y)]    +6xyz  ⇒  x^3 +y^3 +z^3 +3x^2 (1−x)+3yz(1−x)              +3x(1−2yz)+6xyz=1  ⇒ yz=((x^3 +y^3 +z^3 −3x^3 +3x^2 +3x−1)/(3x−3))  or    3(x−1)yz=x^3 +y^3 +z^3 +(1−x^2 )(3x−1)                                 .......(ii)  (i)−(ii)  2y^2 z^2 −3(x−1)yz=xyz−1     +2x(x+2)(1−x)^2 −1−(1−x^2 )(3x−1)  ⇒    2yz(yz+x)+2=(1−x)[−2x^3 −2x^2 +4x−3x^2 −2x+1)  ⇒ 2yz(yz+x)+2+           (1−x)(2x^3 +5x^2 −2x−1)=0  say     y^2 z^2 +x(yz)+1+f=0     yz=−(x/2)+(√((x^2 /4)−(1+f)))    and   y+z=1−x  ⇒    y, z are roots of eq.     s^2 −(1−x)s+(√((x^2 /4)−(1+f)))−(x/2)=0  ⇒ y, z = ((1−x)/2)±(√((((1−x)^2 )/4)+(x/2)−(√((x^2 /4)−(1+f)))))  for +ve    y and z  ,  x<1     1+f < 0           2+2f=(1−x)(2x^3 +5x^2 −2x−1)+2< 0  ⇒  2x^4 +3x^3 −7x^2 +x−1> 0      for x∈(0,1)       but for no real x is this true,    (see graph below)..

(x+y+z)4=x4+(y+z)4+4x3(y+z)+6x2(y+z)2+4x(y+z)3x4+y4+z4+4yz[(y+z)22yz)+6y2z2+6x2(y+z)2+4x(y+z)3=1orsincey+z=1xx4+y4+z42y2z2+6x2(1x)2+4x(1x)3=1________________________2y2z2=x4+y4+z4+(2x2+4x)(1x)21________________________......(i)(x+y+z)3=x3+y3+z3+3[x2(y+z)+y2(z+x)+z2(x+y)]+6xyzx3+y3+z3+3x2(1x)+3yz(1x)+3x(12yz)+6xyz=1yz=x3+y3+z33x3+3x2+3x13x3or3(x1)yz=x3+y3+z3+(1x2)(3x1).......(ii)(i)(ii)2y2z23(x1)yz=xyz1+2x(x+2)(1x)21(1x2)(3x1)2yz(yz+x)+2=(1x)[2x32x2+4x3x22x+1)2yz(yz+x)+2+(1x)(2x3+5x22x1)=0sayy2z2+x(yz)+1+f=0yz=x2+x24(1+f)andy+z=1xy,zarerootsofeq.s2(1x)s+x24(1+f)x2=0y,z=1x2±(1x)24+x2x24(1+f)for+veyandz,x<11+f<02+2f=(1x)(2x3+5x22x1)+2<02x4+3x37x2+x1>0forx(0,1)butfornorealxisthistrue,(seegraphbelow)..

Commented by ajfour last updated on 16/Jul/19

Commented by Prithwish sen last updated on 16/Jul/19

Thank you sir

Thankyousir

Terms of Service

Privacy Policy

Contact: info@tinkutara.com