All Questions Topic List
Integration Questions
Previous in All Question Next in All Question
Previous in Integration Next in Integration
Question Number 64227 by Tony Lin last updated on 16/Jul/19
∫1x6+x3dx=?
Answered by ajfour last updated on 16/Jul/19
I=∫dxx3(1+x3)1x3(1+x3)=Ax+Bx2+Cx3+D1+x+Ex+Fx2−x+1⇒1=(1+x3)(Ax2+Bx+C)+Dx3(x2−x+1)+(Ex+F)x3(1+x)x=0⇒C=1x=−1⇒D=−13⇒A+D+E=0B−D+E+F=0C+D+F=0A=0,B=0⇒E=13,F=−23⇒I=∫dxx3−13∫dx1+x+13∫(x−2)dxx2−x+1=−12x2−13ln(1+x)+16ln(x2−x+1)−∫dx(x−12)2+(32)2I=−12x2−13ln(1+x)+16ln(x2−x+1)−23tan−1(2x−13)+c.
Commented by Tony Lin last updated on 16/Jul/19
thankssir
Terms of Service
Privacy Policy
Contact: info@tinkutara.com