Question and Answers Forum

All Questions      Topic List

Relation and Functions Questions

Previous in All Question      Next in All Question      

Previous in Relation and Functions      Next in Relation and Functions      

Question Number 64355 by turbo msup by abdo last updated on 17/Jul/19

let F(x)=∫_(u(x)) ^(v(x{) f(x,t)dt  how to calculate  (dF/dx)(x)?

$${let}\:{F}\left({x}\right)=\int_{{u}\left({x}\right)} ^{{v}\left({x}\left\{\right.\right.} {f}\left({x},{t}\right){dt} \\ $$$${how}\:{to}\:{calculate}\:\:\frac{{dF}}{{dx}}\left({x}\right)? \\ $$

Commented by MJS last updated on 17/Jul/19

I believe since we don′t know the “status” of  the constant factor x in ∫f(x, t)dt we cannot  give a general formula other than this one:  G(x)=∫_(u(x)) ^(v(x)) f(t)dt=F(v(x))−F(u(x))+C  (dG/dx)=F′(v(x))v′(x)−F′(u(x))u′(x)  trying these simple examples I could not see  a general formula  f(x, t)=x+t     G(x)=(v^2 /2)+vx−(u^2 /2)−ux        G′(x)=(v+x)v′−(u+x)u′  f(x, t)=xt     G(x)=(x/2)(v^2 −u^2 )        G′(x)=x(v′v−u′u)+(1/2)(v^2 −u^2 )  f(x, t)=(x/t)     G(x)=xln (v/u)        G′(x)=ln (v/u) +x(((v′)/v)−((u′)/u))  f(x, t)=t^x      G(x)=((v^(x+1) −u^(x+1) )/(x+1))        G′(x)=v^x (v′+((vln v)/(x+1))−(v/((x+1)^2 )))−u^x (u′+((uln u)/(x+1))−(u/((x+1)^2 )))  f(x, t)=x^t      G(x)=((x^v −x^u )/(ln x))        G′(x)=x^(v−1) (v′x+(v/(ln x))−(1/(ln^2  x)))−x^(u−1) (u′x+(u/(ln x))−(1/(ln^2  x)))

$$\mathrm{I}\:\mathrm{believe}\:\mathrm{since}\:\mathrm{we}\:\mathrm{don}'\mathrm{t}\:\mathrm{know}\:\mathrm{the}\:``\mathrm{status}''\:\mathrm{of} \\ $$$$\mathrm{the}\:\mathrm{constant}\:\mathrm{factor}\:{x}\:\mathrm{in}\:\int{f}\left({x},\:{t}\right){dt}\:\mathrm{we}\:\mathrm{cannot} \\ $$$$\mathrm{give}\:\mathrm{a}\:\mathrm{general}\:\mathrm{formula}\:\mathrm{other}\:\mathrm{than}\:\mathrm{this}\:\mathrm{one}: \\ $$$${G}\left({x}\right)=\underset{{u}\left({x}\right)} {\overset{{v}\left({x}\right)} {\int}}{f}\left({t}\right){dt}={F}\left({v}\left({x}\right)\right)−{F}\left({u}\left({x}\right)\right)+{C} \\ $$$$\frac{{dG}}{{dx}}={F}'\left({v}\left({x}\right)\right){v}'\left({x}\right)−{F}'\left({u}\left({x}\right)\right){u}'\left({x}\right) \\ $$$$\mathrm{trying}\:\mathrm{these}\:\mathrm{simple}\:\mathrm{examples}\:\mathrm{I}\:\mathrm{could}\:\mathrm{not}\:\mathrm{see} \\ $$$$\mathrm{a}\:\mathrm{general}\:\mathrm{formula} \\ $$$${f}\left({x},\:{t}\right)={x}+{t} \\ $$$$\:\:\:{G}\left({x}\right)=\frac{{v}^{\mathrm{2}} }{\mathrm{2}}+{vx}−\frac{{u}^{\mathrm{2}} }{\mathrm{2}}−{ux} \\ $$$$\:\:\:\:\:\:{G}'\left({x}\right)=\left({v}+{x}\right){v}'−\left({u}+{x}\right){u}' \\ $$$${f}\left({x},\:{t}\right)={xt} \\ $$$$\:\:\:{G}\left({x}\right)=\frac{{x}}{\mathrm{2}}\left({v}^{\mathrm{2}} −{u}^{\mathrm{2}} \right) \\ $$$$\:\:\:\:\:\:{G}'\left({x}\right)={x}\left({v}'{v}−{u}'{u}\right)+\frac{\mathrm{1}}{\mathrm{2}}\left({v}^{\mathrm{2}} −{u}^{\mathrm{2}} \right) \\ $$$${f}\left({x},\:{t}\right)=\frac{{x}}{{t}} \\ $$$$\:\:\:{G}\left({x}\right)={x}\mathrm{ln}\:\frac{{v}}{{u}} \\ $$$$\:\:\:\:\:\:{G}'\left({x}\right)=\mathrm{ln}\:\frac{{v}}{{u}}\:+{x}\left(\frac{{v}'}{{v}}−\frac{{u}'}{{u}}\right) \\ $$$${f}\left({x},\:{t}\right)={t}^{{x}} \\ $$$$\:\:\:{G}\left({x}\right)=\frac{{v}^{{x}+\mathrm{1}} −{u}^{{x}+\mathrm{1}} }{{x}+\mathrm{1}} \\ $$$$\:\:\:\:\:\:{G}'\left({x}\right)={v}^{{x}} \left({v}'+\frac{{v}\mathrm{ln}\:{v}}{{x}+\mathrm{1}}−\frac{{v}}{\left({x}+\mathrm{1}\right)^{\mathrm{2}} }\right)−{u}^{{x}} \left({u}'+\frac{{u}\mathrm{ln}\:{u}}{{x}+\mathrm{1}}−\frac{{u}}{\left({x}+\mathrm{1}\right)^{\mathrm{2}} }\right) \\ $$$${f}\left({x},\:{t}\right)={x}^{{t}} \\ $$$$\:\:\:{G}\left({x}\right)=\frac{{x}^{{v}} −{x}^{{u}} }{\mathrm{ln}\:{x}} \\ $$$$\:\:\:\:\:\:{G}'\left({x}\right)={x}^{{v}−\mathrm{1}} \left({v}'{x}+\frac{{v}}{\mathrm{ln}\:{x}}−\frac{\mathrm{1}}{\mathrm{ln}^{\mathrm{2}} \:{x}}\right)−{x}^{{u}−\mathrm{1}} \left({u}'{x}+\frac{{u}}{\mathrm{ln}\:{x}}−\frac{\mathrm{1}}{\mathrm{ln}^{\mathrm{2}} \:{x}}\right) \\ $$

Commented by mathmax by abdo last updated on 17/Jul/19

thank you sir mjs for this hard work when i find a formula  for this i will post...

$${thank}\:{you}\:{sir}\:{mjs}\:{for}\:{this}\:{hard}\:{work}\:{when}\:{i}\:{find}\:{a}\:{formula} \\ $$$${for}\:{this}\:{i}\:{will}\:{post}... \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com