Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 64392 by mathmax by abdo last updated on 17/Jul/19

1)calculate A_n =∫_0 ^∞  ((sin(x^(2n) ))/((x^2  +1)^2 ))dx   with n integr natural  2) study the convergene of Σ A_n

1)calculateAn=0sin(x2n)(x2+1)2dxwithnintegrnatural2)studytheconvergeneofΣAn

Commented by mathmax by abdo last updated on 18/Jul/19

1) we have 2A_n =∫_(−∞) ^(+∞)   ((sin(x^(2n) ))/((x^2  +1)^2 ))dx =Im(∫_(−∞) ^(+∞)  (e^(ix^(2n) ) /((x^2  +1)^2 )))  let W(z) =(e^(iz^(2n) ) /((z^2 +1)^2 )) ⇒W(z)=(e^(iz^(2n) ) /((z−i)^2 (z+i)^2 ))  so the poles of W are  +^− i  (doubles)  residus theorem give  ∫_(−∞) ^(+∞) W(z)dz =2iπRes(W,i)  Res(W,i)=lim_(z→i)    (1/((2−1)!)){(z−i)^2 W(z)}^((1))   =lim_(z→i)  {(e^(iz^(2n) ) /((z+i)^2 ))}^((1))  =lim_(z→i)    ((2niz^(2n−1)  e^(iz^(2n) ) (z+i)^2 −2(z+i)e^(iz^(2n) ) )/((z+i)^4 ))  =lim_(z→i)    ((2niz^(2n−1) e^(iz^(2n) ) (z+i)−2e^(iz^(2n) ) )/((z+i)^3 ))  lim_(z→i)    (({2niz^(2n−1) (z+i)−2}e^(iz^(2n) ) )/((z+i)^3 ))  =(({(2ni)(2i)(−1)^n i^(−1) −2})/((2i)^3 ))e^(i(−1)^n )   =(({4ni(−1)^n −2)e^(i(−1)^n ) )/(−8i)) =(((1−2ni(−1)^n )e^(i(−1)^n ) )/(4i)) ⇒  ∫_(−∞) ^(+∞)  W(z)dz =((2iπ)/(4i)){1−2ni(−1)^n )e^(i(−1)^n )  =(π/2)(1−2ni(−1)^n )e^(i(−1)^n ) )  =(π/2)(1−2n(−1)^n i)(cos(−1)^n  +isin(−1)^n )  =(π/2)(cos(−1)^n  +isin(−1)^n −2n(−1)^n cos(−1)^n i  +2n(−1)^n sin(−1)^n }  =(π/2){ cos(−1)^n  +2n(−1)^n sin(−1)^n  +i(sin(−1)^n −2ncos(−1)^n )}  2A =Im(∫_(−∞) ^(+∞)  W(z)dz) =(π/2){sin(−1)^n −2n cos(−1)^n } ⇒  A =(π/4){ sin(−1)^n −2ncos(−1)^n } .

1)wehave2An=+sin(x2n)(x2+1)2dx=Im(+eix2n(x2+1)2)letW(z)=eiz2n(z2+1)2W(z)=eiz2n(zi)2(z+i)2sothepolesofWare+i(doubles)residustheoremgive+W(z)dz=2iπRes(W,i)Res(W,i)=limzi1(21)!{(zi)2W(z)}(1)=limzi{eiz2n(z+i)2}(1)=limzi2niz2n1eiz2n(z+i)22(z+i)eiz2n(z+i)4=limzi2niz2n1eiz2n(z+i)2eiz2n(z+i)3limzi{2niz2n1(z+i)2}eiz2n(z+i)3={(2ni)(2i)(1)ni12}(2i)3ei(1)n={4ni(1)n2)ei(1)n8i=(12ni(1)n)ei(1)n4i+W(z)dz=2iπ4i{12ni(1)n)ei(1)n=π2(12ni(1)n)ei(1)n)=π2(12n(1)ni)(cos(1)n+isin(1)n)=π2(cos(1)n+isin(1)n2n(1)ncos(1)ni+2n(1)nsin(1)n}=π2{cos(1)n+2n(1)nsin(1)n+i(sin(1)n2ncos(1)n)}2A=Im(+W(z)dz)=π2{sin(1)n2ncos(1)n}A=π4{sin(1)n2ncos(1)n}.

Commented by mathmax by abdo last updated on 18/Jul/19

2) we have A_n =(π/4)sin(−1)^n  −((nπ)/2) cos(−1)^n  ⇒  ΣA_n =(π/4)Σ sin(−1)^n   −(π/2)Σn cos(−1)^n   but  lim_(n→+∞) sin(−1)^n  ≠0  also lim_(n→+∞) ncos(−1)^n  ≠0  ⇒  Σ A_n   diverges.

2)wehaveAn=π4sin(1)nnπ2cos(1)nΣAn=π4Σsin(1)nπ2Σncos(1)nbutlimn+sin(1)n0alsolimn+ncos(1)n0ΣAndiverges.

Terms of Service

Privacy Policy

Contact: info@tinkutara.com