All Questions Topic List
Integration Questions
Previous in All Question Next in All Question
Previous in Integration Next in Integration
Question Number 64392 by mathmax by abdo last updated on 17/Jul/19
1)calculateAn=∫0∞sin(x2n)(x2+1)2dxwithnintegrnatural2)studytheconvergeneofΣAn
Commented by mathmax by abdo last updated on 18/Jul/19
1)wehave2An=∫−∞+∞sin(x2n)(x2+1)2dx=Im(∫−∞+∞eix2n(x2+1)2)letW(z)=eiz2n(z2+1)2⇒W(z)=eiz2n(z−i)2(z+i)2sothepolesofWare+−i(doubles)residustheoremgive∫−∞+∞W(z)dz=2iπRes(W,i)Res(W,i)=limz→i1(2−1)!{(z−i)2W(z)}(1)=limz→i{eiz2n(z+i)2}(1)=limz→i2niz2n−1eiz2n(z+i)2−2(z+i)eiz2n(z+i)4=limz→i2niz2n−1eiz2n(z+i)−2eiz2n(z+i)3limz→i{2niz2n−1(z+i)−2}eiz2n(z+i)3={(2ni)(2i)(−1)ni−1−2}(2i)3ei(−1)n={4ni(−1)n−2)ei(−1)n−8i=(1−2ni(−1)n)ei(−1)n4i⇒∫−∞+∞W(z)dz=2iπ4i{1−2ni(−1)n)ei(−1)n=π2(1−2ni(−1)n)ei(−1)n)=π2(1−2n(−1)ni)(cos(−1)n+isin(−1)n)=π2(cos(−1)n+isin(−1)n−2n(−1)ncos(−1)ni+2n(−1)nsin(−1)n}=π2{cos(−1)n+2n(−1)nsin(−1)n+i(sin(−1)n−2ncos(−1)n)}2A=Im(∫−∞+∞W(z)dz)=π2{sin(−1)n−2ncos(−1)n}⇒A=π4{sin(−1)n−2ncos(−1)n}.
2)wehaveAn=π4sin(−1)n−nπ2cos(−1)n⇒ΣAn=π4Σsin(−1)n−π2Σncos(−1)nbutlimn→+∞sin(−1)n≠0alsolimn→+∞ncos(−1)n≠0⇒ΣAndiverges.
Terms of Service
Privacy Policy
Contact: info@tinkutara.com