All Questions Topic List
Integration Questions
Previous in All Question Next in All Question
Previous in Integration Next in Integration
Question Number 64419 by turbo msup by abdo last updated on 17/Jul/19
1)find∫dxx−1−x22)calculate∫01dxx−1−x2
Commented by mathmax by abdo last updated on 18/Jul/19
1)letA=∫dxx−1−x2changementx=sinθgiveA=∫cosθsinθ−cosθdθ=∫cosθcosθ(tanθ−1)dθ=∫dθtanθ−1=tanθ=t∫dt(1+t2)(t−1)letdecomposeF(t)=1(t−1)(t2+1)⇒F(t)=at−1+bt+ct2+1a=limt→1(t−1)F(t)=12limt→+∞tF(t)=0=a+b⇒b=−12⇒F(t)=12(t−1)+−12t+ct2+1F(0)=−1=−12+c⇒c=−12⇒F(t)=12(t−1)−12t+1t2+1⇒A=12∫dtt−1−12∫t+1t2+1dt+c=12ln∣t−1∣−14ln(t2+1)−12arctan(t)+cwehavet=tanθandθ=arcsinx⇒A=12ln∣tan(arcsinx)−1∣−14ln(1+tan2(arcsinx))−12arcsinx+c
Terms of Service
Privacy Policy
Contact: info@tinkutara.com