Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 64429 by mathmax by abdo last updated on 17/Jul/19

let f(x)=∫_0 ^1     (dt/(t+x+(√(t^2  +1))))   (x real parametre)  1) find a explicite form forf(x)  2)detemine also g(x) =∫_0 ^1    (dt/((t+x+(√(t^2 +1)))^2 ))  3)give f^((n)) (x) at form of integrals  4) find the values of  ∫_0 ^1     (dt/(t+(√(t^2 +1))))  and  ∫_0 ^1    (dt/((t+(√(t^2  +1)))^2 ))  5) find the values of  ∫_0 ^1     (dt/(t+1 +(√(t^2  +1)))) and ∫_0 ^1   (dt/((t+1+(√(t^2 +1)))^2 ))

letf(x)=01dtt+x+t2+1(xrealparametre)1)findaexpliciteformforf(x)2)deteminealsog(x)=01dt(t+x+t2+1)23)givef(n)(x)atformofintegrals4)findthevaluesof01dtt+t2+1and01dt(t+t2+1)25)findthevaluesof01dtt+1+t2+1and01dt(t+1+t2+1)2

Commented by mathmax by abdo last updated on 20/Jul/19

1) we have f(x) =∫_0 ^1   (dt/(t+x+(√(t^2  +1))))  changement t =sh(u) give  f(x) =∫_0 ^(ln(1+(√2)))     ((chu du)/(sh(u)+x +ch(u)))  =∫_0 ^(ln(1+(√2)))    (((e^u  +e^(−u) )/2)/(((e^u −e^(−u) )/2)+x+((e^u  +e^(−u) )/2)))du  =∫_0 ^(ln(1+(√2)))     ((e^u  +e^(−u) )/(e^u −e^(−u)  +2x +e^u  +e^(−u) ))du =∫_0 ^(ln(1+(√2)))   ((e^u  +e^(−u) )/(2x +2e^u ))du  =_(e^u =z)     (1/2)∫_1 ^(1+(√2))     ((z +z^(−1) )/(x +z)) (dz/z) =(1/2) ∫_1 ^(1+(√2))    ((z+z^(−1) )/(xz +z^2 ))dz  =(1/2) ∫_1 ^(1+(√2))   ((z^2  +1)/(z^2 (x+z)))dz  let decompose F(z)=((z^2  +1)/(z^2 (x+z)))  F(z) =(a/z) +(b/z^2 ) +(c/(x+z))  b =lim_(z→0) z^2  F(z) =(1/x)  c =lim_(z→−x)  (z+x)F(z) =((x^2  +1)/x^2 ) ⇒  F(z) =(a/z) +(1/(xz^2 )) +((x^2 +1)/(x^2 (z+x)))  F(1) =(2/(x+1)) =a +(1/x) +((x^2  +1)/(x^2 (x+1))) ⇒2=(x+1)a+((x+1)/x) +((x^2  +1)/x^2 ) ⇒  2=(x+1)a +((x^2  +x +x^2  +1)/x^2 ) =(x+1)a +((2x^2  +x+1)/x^2 ) ⇒  2x^2  =x^2 (x+1)a +2x^2  +x+1 ⇒x^2 (x+1)a =−(x+1) ⇒  a =−(1/x^2 )  (if x≠−1) ⇒F(z) =−(1/(x^2 z)) +(1/(xz^2 )) +((x^2  +1)/(x^2 (z+x))) ⇒  2f(x) =∫_1 ^(1+(√2)) {−(1/(x^2 z)) +(1/(xz^2 )) +((x^2  +1)/(x^2 (z+x)))}dz  =−(1/x^2 ) ∫_1 ^(1+(√2)) (dz/z) +(1/x) ∫_1 ^(1+(√2)) (dz/z^2 ) +((x^2  +1)/x^2 ) ∫_1 ^(1+(√2))  (dz/(z+x))  =−(1/x^2 )[ln∣z∣]_1 ^(1+(√2)) −(1/x)[(1/z)]_1 ^(1+(√2))  +((x^2  +1)/x^2 )[ln∣z+x∣]_1 ^(1+(√2))   =((−ln(1+(√2)))/x^2 ) −(1/x)((1/(1+(√2))) −1) +((x^2  +1)/x^2 ){ln∣x+1+(√2)∣−ln∣x+1∣} ⇒  f(x)=(1/2){−((ln(1+(√2)))/x^2 ) +((√2)/x) +((x^2  +1)/x^2 )ln∣((x+1+(√2))/(x+1))∣ }

1)wehavef(x)=01dtt+x+t2+1changementt=sh(u)givef(x)=0ln(1+2)chudush(u)+x+ch(u)=0ln(1+2)eu+eu2eueu2+x+eu+eu2du=0ln(1+2)eu+eueueu+2x+eu+eudu=0ln(1+2)eu+eu2x+2eudu=eu=z1211+2z+z1x+zdzz=1211+2z+z1xz+z2dz=1211+2z2+1z2(x+z)dzletdecomposeF(z)=z2+1z2(x+z)F(z)=az+bz2+cx+zb=limz0z2F(z)=1xc=limzx(z+x)F(z)=x2+1x2F(z)=az+1xz2+x2+1x2(z+x)F(1)=2x+1=a+1x+x2+1x2(x+1)2=(x+1)a+x+1x+x2+1x22=(x+1)a+x2+x+x2+1x2=(x+1)a+2x2+x+1x22x2=x2(x+1)a+2x2+x+1x2(x+1)a=(x+1)a=1x2(ifx1)F(z)=1x2z+1xz2+x2+1x2(z+x)2f(x)=11+2{1x2z+1xz2+x2+1x2(z+x)}dz=1x211+2dzz+1x11+2dzz2+x2+1x211+2dzz+x=1x2[lnz]11+21x[1z]11+2+x2+1x2[lnz+x]11+2=ln(1+2)x21x(11+21)+x2+1x2{lnx+1+2lnx+1}f(x)=12{ln(1+2)x2+2x+x2+1x2lnx+1+2x+1}

Commented by mathmax by abdo last updated on 20/Jul/19

2) theorem of derivation give   f^′ (x) =∫_0 ^1  (∂/∂x)((1/(t+x+(√(t^2  +1)))))dt =−∫_0 ^1   (dt/((t+x+(√(t^2  +1)))^2 )) =−g(x) ⇒  g(x) =−f^′ (x)   f is known rest to calculate f^′ (x)

2)theoremofderivationgivef(x)=01x(1t+x+t2+1)dt=01dt(t+x+t2+1)2=g(x)g(x)=f(x)fisknownresttocalculatef(x)

Commented by mathmax by abdo last updated on 20/Jul/19

3)we have f^((n)) (x) =∫_0 ^1  (∂^n /∂x^n )((1/(t+x+(√(t^2  +1)))))dt  =∫_0 ^1    (((−1)^n n!)/((t+x+(√(t^2  +1)))^(n+1) ))dt

3)wehavef(n)(x)=01nxn(1t+x+t2+1)dt=01(1)nn!(t+x+t2+1)n+1dt

Commented by mathmax by abdo last updated on 20/Jul/19

4) ∫_0 ^1    (dt/(t+(√(t^2  +1)))) =_(t=sh(u))     ∫_0 ^(ln(1+(√2))) ((chu)/(sh(u)+ch(u)))du  =∫_0 ^(ln(1+(√2)))  ((e^u +e^(−u) )/(e^u −e^(−u)  +e^u  +e^(−u) )) du =∫_0 ^(ln(1+(√2)))  ((e^u  +e^(−u) )/(2e^u )) du  =(1/2) ∫_0 ^(ln(1+(√2))) du +(1/2) ∫_0 ^(ln(1+(√2))) e^(−2u)  du  =((ln(1+(√2)))/2) −(1/4)[ e^(−2u) ]_0 ^(ln(1+(√2)))   =((ln(1+(√2)))/2)−(1/4){ (1/((1+(√2))^2 )) −1} .

4)01dtt+t2+1=t=sh(u)0ln(1+2)chush(u)+ch(u)du=0ln(1+2)eu+eueueu+eu+eudu=0ln(1+2)eu+eu2eudu=120ln(1+2)du+120ln(1+2)e2udu=ln(1+2)214[e2u]0ln(1+2)=ln(1+2)214{1(1+2)21}.

Commented by mathmax by abdo last updated on 20/Jul/19

5) ∫_0 ^1  (dt/(t+1+(√(t^2  +1)))) =f(1) =(1/2){−ln(1+(√2))+(√2) +2ln∣((2+(√2))/2)∣

5)01dtt+1+t2+1=f(1)=12{ln(1+2)+2+2ln2+22

Terms of Service

Privacy Policy

Contact: info@tinkutara.com