Question and Answers Forum

All Questions      Topic List

Coordinate Geometry Questions

Previous in All Question      Next in All Question      

Previous in Coordinate Geometry      Next in Coordinate Geometry      

Question Number 64436 by ajfour last updated on 17/Jul/19

Commented by ajfour last updated on 17/Jul/19

Find radius of arc length s , if  area between parabola and arc  is a maximum.

Findradiusofarclengths,ifareabetweenparabolaandarcisamaximum.

Answered by Tanmay chaudhury last updated on 18/Jul/19

y=x^2  curve passes through (α,α^2 ) and (−α,α^2 )  arc is a portion of circle ...that circle pass  through(α,α^2 ) ,(−α,α^2 ) and (0,β)  x^2 +y^2 +2gx+2fy+c=0  α^2 +α^4 +2gα+2fα^2 +c=0  α^2 +α^4 −2gα+2fα^2 +c=0  β^2 +2fβ+c=0  4gα=0  g=0  α^2 +α^4 +2fα^2 +c=0  β^2 +2fβ+c=0  2f(α^2 −β)+α^2 +α^4 −β^2 =0  f=((β^2 −α^2 −α^4 )/(2(α^2 −β)))  β^2 +(((β^2 −α^2 −α^4 )/(α^2 −β)))β+c=0  ((α^2 β^2 −β^3 +β^3 −β(α^2 +α^4 ))/(α^2 −β))+c=0  ((α^2 β(β−1−α^2 ))/(α^2 −β))+c=0  c=((α^2 β(1+α^2 −β))/(α^2 −β))  eqn of circle  x^2 +y^2 +2(((β^2 −α^2 −α^4 )/(2(α^2 −β))))y+((α^2 β(1+α^2 −β))/(α^2 −β))=0  x^2 +y^2 +2Py+Q=0  Radius=(√(P^2 −Q))   y^2 +2Py+P^2 +Q+x^2 =P^2   (y+P)^2 =P^2 −Q−x^2   y=−P+(√(P^2 −Q−x^2 ))   required area which to maximise  2[∫_0 ^α^2  [(−P+(√(P^2 −Q−x^2 )) )−x^2 ] dx  2∣Px−(x^3 /3)+(x/2)(√(P^2 −Q−x^2 )) +((P^2 −Q)/2)sin^(−1) ((x/(√(P^2 −Q))))∣_0 ^α^2    2[Pα^2 −(α^6 /3)+(α^2 /2)(√(P^2 −Q−α^4 )) +((P^2 −Q)/2)sin^(−1) ((α^2 /(√(P^2 −Q))))  pls check upto this ...nxt step put P and Q  maximize area  then finally R

y=x2curvepassesthrough(α,α2)and(α,α2)arcisaportionofcircle...thatcirclepassthrough(α,α2),(α,α2)and(0,β)x2+y2+2gx+2fy+c=0α2+α4+2gα+2fα2+c=0α2+α42gα+2fα2+c=0β2+2fβ+c=04gα=0g=0α2+α4+2fα2+c=0β2+2fβ+c=02f(α2β)+α2+α4β2=0f=β2α2α42(α2β)β2+(β2α2α4α2β)β+c=0α2β2β3+β3β(α2+α4)α2β+c=0α2β(β1α2)α2β+c=0c=α2β(1+α2β)α2βeqnofcirclex2+y2+2(β2α2α42(α2β))y+α2β(1+α2β)α2β=0x2+y2+2Py+Q=0Radius=P2Qy2+2Py+P2+Q+x2=P2(y+P)2=P2Qx2y=P+P2Qx2requiredareawhichtomaximise2[0α2[(P+P2Qx2)x2]dx2Pxx33+x2P2Qx2+P2Q2sin1(xP2Q)0α22[Pα2α63+α22P2Qα4+P2Q2sin1(α2P2Q)plscheckuptothis...nxtstepputPandQmaximizeareathenfinallyR

Answered by ajfour last updated on 18/Jul/19

let circle eq. be  x^2 +(y−c)^2 =r^2         Also  let    r𝛉=(s/2)  Intersection of parabola and  circle on the right be P (h,h^2 ).      h^2 =c+rcos θ  ,  h=rsin θ  (A/2)=∫_0 ^(  h^2 ) (√y)dy−((r^2 sin θcos θ)/2)+((r^2 θ)/2)       A = ((4h^3 )/3)−r^2 sin θcos θ+r^2 θ    A=((s/(2θ)))^2 [((2s)/(3θ))sin^3 θ−sin θcos θ+θ]  (dA/dθ)=−(s^2 /(2θ^3 ))[((2s)/(3θ))sin^3 θ−sin θcos θ+θ]    +(s^2 /(4θ^2 ))[−((2s)/(3θ^3 ))sin^3 θ+((2s)/θ)sin^2 θ−cos^2 θ                     +sin^2 θ+1]  ⇒  ((4s)/(3θ))sin^3 θ−2sin θcos θ+2θ  = −((2s)/(3θ^2 ))+2ssin^2 θ−θcos^2 θ+θsin^2 θ+θ  .....

letcircleeq.bex2+(yc)2=r2Alsoletrθ=s2IntersectionofparabolaandcircleontherightbeP(h,h2).h2=c+rcosθ,h=rsinθA2=0h2ydyr2sinθcosθ2+r2θ2A=4h33r2sinθcosθ+r2θA=(s2θ)2[2s3θsin3θsinθcosθ+θ]dAdθ=s22θ3[2s3θsin3θsinθcosθ+θ]+s24θ2[2s3θ3sin3θ+2sθsin2θcos2θ+sin2θ+1]4s3θsin3θ2sinθcosθ+2θ=2s3θ2+2ssin2θθcos2θ+θsin2θ+θ.....

Commented by ajfour last updated on 18/Jul/19

can any calculator solve this eq.  and provide θ in terms of s ?

cananycalculatorsolvethiseq.andprovideθintermsofs?

Terms of Service

Privacy Policy

Contact: info@tinkutara.com