Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 6444 by sanusihammed last updated on 27/Jun/16

I = ∫(dx/(sinx + sin2x))

I=dxsinx+sin2x

Commented by Temp last updated on 27/Jun/16

Try www.WolframAlpha.com  search:  “int 1/(sin(x)+sin(2x)) dx”  if you want, for example, ∫_1 ^( 2) xdx:  “int x dx from x=1 to 2”

Trywww.WolframAlpha.comsearch:int1/(sin(x)+sin(2x))dxifyouwant,forexample,12xdx:intxdxfromx=1to2

Answered by Yozzii last updated on 27/Jun/16

I=∫(dx/(sinx+sin2x))=∫(dx/(sinx(1+2cosx)))  Let u=tan0.5x⇒(2/(1+u^2 ))du=dx  sinx=((2u)/(1+u^2 )) and cosx=((1−u^2 )/(1+u^2 )).  ∴I=∫((2/(1+u^2 ))/(((2u)/(1+u^2 ))(1+((2(1−u^2 ))/(1+u^2 )))))du  I=∫(((1+u^2 ))/(u(1+u^2 +2−2u^2 )))du  I=∫((1+u^2 )/(u(3−u^2 )))du  I=−∫((1+u^2 )/(u(u−(√3))(u+(√3))))du  Let ((1+u^2 )/(u(u−(√3))(u+(√3))))≡(a/u)+(b/(u−(√3)))+(c/(u+(√3)))  ≡((a(u^2 −3)+bu(u+(√3))+cu(u−(√3)))/(u(u+(√3))(u−(√3))))  ∴1+u^2 =a(u^2 −3)+bu(u+(√3))+cu(u−(√3))  Let u=0∴ 1=a(−3)⇒a=((−1)/3).  Let u=(√3)⇒4=b(√3)(2(√3))  4=6b⇒b=(2/3)  Let u=−(√3)⇒4=c(−(√3))(−2(√3))  c=(2/3).  ∴ I=−∫{(2/3)((1/(u+(√3)))+(1/(u−(√3))))−(1/(3u))}du  I=−(1/3)∫{2((1/(u+(√3)))+(1/(u−(√3))))−(1/u)}du  I=((−1)/3)[2ln∣(u+(√3))(u−(√3))∣−ln∣u∣]+C  I=((−1)/3)ln∣(((u^2 −3)^2 )/u)∣+C  I=(1/3)ln∣(u/((u^2 −3)^2 ))∣+C   I=(1/3)ln∣((tan0.5x)/((tan^2 0.5x−3)^2 ))∣+C

I=dxsinx+sin2x=dxsinx(1+2cosx)Letu=tan0.5x21+u2du=dxsinx=2u1+u2andcosx=1u21+u2.I=2/(1+u2)2u1+u2(1+2(1u2)1+u2)duI=(1+u2)u(1+u2+22u2)duI=1+u2u(3u2)duI=1+u2u(u3)(u+3)duLet1+u2u(u3)(u+3)au+bu3+cu+3a(u23)+bu(u+3)+cu(u3)u(u+3)(u3)1+u2=a(u23)+bu(u+3)+cu(u3)Letu=01=a(3)a=13.Letu=34=b3(23)4=6bb=23Letu=34=c(3)(23)c=23.I={23(1u+3+1u3)13u}duI=13{2(1u+3+1u3)1u}duI=13[2ln(u+3)(u3)lnu]+CI=13ln(u23)2u+CI=13lnu(u23)2+CI=13lntan0.5x(tan20.5x3)2+C

Commented by nburiburu last updated on 27/Jun/16

there is another way, instead universal trigonometry substitution:  ∫(1/(sin x (1+2cos x))).dx.((sin x)/(sin x))=  ∫((sin x)/(sin^2 x(1+2cosx))).dx=  ∫((sin x)/((1−cos^2 x)(1+2cos x))).dx  t=cos x  dt=−sin x dx  ∫((−1)/((1−t^2 )(1+2t))).dt  and using rational descomposition it is solved.  1−t^2 =(1−t)(1+t)  =−∫(A/(1−t))dt −∫(B/(1+t))dt −∫(C/(1+2t))dt=  =A ln(1−t)−B ln(1+t)−(C/2) ln(1+2t)+c  where  1=A(1+t)(1+2t)+B(1−t)(1+2t)+C(1−t^2 )  and if t=1: 1=A.2.3⇒A=(1/6)  if t=−1: 1=B(−2)(−1)⇒B=(1/2)  if t=−(1/2): 1=C(1−(1/4))⇒C=(4/3)  so  =(1/6) ln(1−cos x)−(1/2)ln(1+cos x)−(2/3)ln(1+2cos x)+c

thereisanotherway,insteaduniversaltrigonometrysubstitution:1sinx(1+2cosx).dx.sinxsinx=sinxsin2x(1+2cosx).dx=sinx(1cos2x)(1+2cosx).dxt=cosxdt=sinxdx1(1t2)(1+2t).dtandusingrationaldescompositionitissolved.1t2=(1t)(1+t)=A1tdtB1+tdtC1+2tdt==Aln(1t)Bln(1+t)C2ln(1+2t)+cwhere1=A(1+t)(1+2t)+B(1t)(1+2t)+C(1t2)andift=1:1=A.2.3A=16ift=1:1=B(2)(1)B=12ift=12:1=C(114)C=43so=16ln(1cosx)12ln(1+cosx)23ln(1+2cosx)+c

Commented by sanusihammed last updated on 27/Jun/16

I really appreciate

Ireallyappreciate

Terms of Service

Privacy Policy

Contact: info@tinkutara.com