All Questions Topic List
Integration Questions
Previous in All Question Next in All Question
Previous in Integration Next in Integration
Question Number 64448 by mathmax by abdo last updated on 18/Jul/19
calculatelimx→π∫π2xdx1+sinx−cosx
Commented by mathmax by abdo last updated on 19/Jul/19
letA(x)=∫π2xdt1+sint−costchangementtan(t2)=uviveA(x)=∫1tan(x2)2du(1+u2)(1+2u1+u2−1−u21+u2)=∫1tan(x2)2du1+u2+2u−1+u2=∫1tan(x2)2du2u2+2u=∫1tan(x2)duu(u+1)=∫1tan(x2){1u−1u+1}du=[ln∣uu+1∣]1tan(x2)=ln∣tan(x2)tan(x2)+1∣−ln(12)⇒limx→πA(x)=0+ln(2)=ln(2).
Answered by Tanmay chaudhury last updated on 18/Jul/19
∫dx2sinx2cosx2+2sin2x2∫sec2x2dx2tanx2+2tan2x2dx∫d(tanx2)tanx2(1+tanx2)∫d(tanx2)tanx2−∫d(tanx2)1+tanx2∣ln(tanx21+tanx2)∣π2πln1−ln(11+1)=ln2
Terms of Service
Privacy Policy
Contact: info@tinkutara.com