Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 64448 by mathmax by abdo last updated on 18/Jul/19

calculate lim_(x→π)   ∫_(π/2) ^x    (dx/(1+sinx−cosx))

calculatelimxππ2xdx1+sinxcosx

Commented by mathmax by abdo last updated on 19/Jul/19

let A(x) =∫_(π/2) ^x   (dt/(1+sint−cost)) changement tan((t/2))=u vive  A(x) =∫_1 ^(tan((x/2)))    ((2du)/((1+u^2 )(1+((2u)/(1+u^2 ))−((1−u^2 )/(1+u^2 )))))  =∫_1 ^(tan((x/2)))  ((2du)/(1+u^2  +2u−1+u^2 )) =∫_1 ^(tan((x/2)))   ((2du)/(2u^2 +2u)) =∫_1 ^(tan((x/2)))  (du/(u(u+1)))  =∫_1 ^(tan((x/2))) {(1/u)−(1/(u+1))}du =[ln∣(u/(u+1))∣]_1 ^(tan((x/2)))  =ln∣((tan((x/2)))/(tan((x/2))+1))∣−ln((1/2))  ⇒lim_(x→π)  A(x) =0+ln(2) =ln(2).

letA(x)=π2xdt1+sintcostchangementtan(t2)=uviveA(x)=1tan(x2)2du(1+u2)(1+2u1+u21u21+u2)=1tan(x2)2du1+u2+2u1+u2=1tan(x2)2du2u2+2u=1tan(x2)duu(u+1)=1tan(x2){1u1u+1}du=[lnuu+1]1tan(x2)=lntan(x2)tan(x2)+1ln(12)limxπA(x)=0+ln(2)=ln(2).

Answered by Tanmay chaudhury last updated on 18/Jul/19

∫(dx/(2sin(x/2)cos(x/2)+2sin^2 (x/2)))  ∫((sec^2 (x/2)dx)/(2tan(x/2)+2tan^2 (x/2)))dx  ∫((d(tan(x/2)))/(tan(x/2)(1+tan(x/2))))  ∫((d(tan(x/2)))/(tan(x/2)))−∫((d(tan(x/2)))/(1+tan(x/2)))  ∣ln(((tan(x/2))/(1+tan(x/2))))∣_(π/2) ^π   ln1−ln((1/(1+1)))  =ln2

dx2sinx2cosx2+2sin2x2sec2x2dx2tanx2+2tan2x2dxd(tanx2)tanx2(1+tanx2)d(tanx2)tanx2d(tanx2)1+tanx2ln(tanx21+tanx2)π2πln1ln(11+1)=ln2

Terms of Service

Privacy Policy

Contact: info@tinkutara.com