Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 64448 by mathmax by abdo last updated on 18/Jul/19

calculate lim_(x→π)   ∫_(π/2) ^x    (dx/(1+sinx−cosx))

$${calculate}\:{lim}_{{x}\rightarrow\pi} \:\:\int_{\frac{\pi}{\mathrm{2}}} ^{{x}} \:\:\:\frac{{dx}}{\mathrm{1}+{sinx}−{cosx}} \\ $$

Commented by mathmax by abdo last updated on 19/Jul/19

let A(x) =∫_(π/2) ^x   (dt/(1+sint−cost)) changement tan((t/2))=u vive  A(x) =∫_1 ^(tan((x/2)))    ((2du)/((1+u^2 )(1+((2u)/(1+u^2 ))−((1−u^2 )/(1+u^2 )))))  =∫_1 ^(tan((x/2)))  ((2du)/(1+u^2  +2u−1+u^2 )) =∫_1 ^(tan((x/2)))   ((2du)/(2u^2 +2u)) =∫_1 ^(tan((x/2)))  (du/(u(u+1)))  =∫_1 ^(tan((x/2))) {(1/u)−(1/(u+1))}du =[ln∣(u/(u+1))∣]_1 ^(tan((x/2)))  =ln∣((tan((x/2)))/(tan((x/2))+1))∣−ln((1/2))  ⇒lim_(x→π)  A(x) =0+ln(2) =ln(2).

$${let}\:{A}\left({x}\right)\:=\int_{\frac{\pi}{\mathrm{2}}} ^{{x}} \:\:\frac{{dt}}{\mathrm{1}+{sint}−{cost}}\:{changement}\:{tan}\left(\frac{{t}}{\mathrm{2}}\right)={u}\:{vive} \\ $$$${A}\left({x}\right)\:=\int_{\mathrm{1}} ^{{tan}\left(\frac{{x}}{\mathrm{2}}\right)} \:\:\:\frac{\mathrm{2}{du}}{\left(\mathrm{1}+{u}^{\mathrm{2}} \right)\left(\mathrm{1}+\frac{\mathrm{2}{u}}{\mathrm{1}+{u}^{\mathrm{2}} }−\frac{\mathrm{1}−{u}^{\mathrm{2}} }{\mathrm{1}+{u}^{\mathrm{2}} }\right)} \\ $$$$=\int_{\mathrm{1}} ^{{tan}\left(\frac{{x}}{\mathrm{2}}\right)} \:\frac{\mathrm{2}{du}}{\mathrm{1}+{u}^{\mathrm{2}} \:+\mathrm{2}{u}−\mathrm{1}+{u}^{\mathrm{2}} }\:=\int_{\mathrm{1}} ^{{tan}\left(\frac{{x}}{\mathrm{2}}\right)} \:\:\frac{\mathrm{2}{du}}{\mathrm{2}{u}^{\mathrm{2}} +\mathrm{2}{u}}\:=\int_{\mathrm{1}} ^{{tan}\left(\frac{{x}}{\mathrm{2}}\right)} \:\frac{{du}}{{u}\left({u}+\mathrm{1}\right)} \\ $$$$=\int_{\mathrm{1}} ^{{tan}\left(\frac{{x}}{\mathrm{2}}\right)} \left\{\frac{\mathrm{1}}{{u}}−\frac{\mathrm{1}}{{u}+\mathrm{1}}\right\}{du}\:=\left[{ln}\mid\frac{{u}}{{u}+\mathrm{1}}\mid\right]_{\mathrm{1}} ^{{tan}\left(\frac{{x}}{\mathrm{2}}\right)} \:={ln}\mid\frac{{tan}\left(\frac{{x}}{\mathrm{2}}\right)}{{tan}\left(\frac{{x}}{\mathrm{2}}\right)+\mathrm{1}}\mid−{ln}\left(\frac{\mathrm{1}}{\mathrm{2}}\right) \\ $$$$\Rightarrow{lim}_{{x}\rightarrow\pi} \:{A}\left({x}\right)\:=\mathrm{0}+{ln}\left(\mathrm{2}\right)\:={ln}\left(\mathrm{2}\right). \\ $$$$ \\ $$

Answered by Tanmay chaudhury last updated on 18/Jul/19

∫(dx/(2sin(x/2)cos(x/2)+2sin^2 (x/2)))  ∫((sec^2 (x/2)dx)/(2tan(x/2)+2tan^2 (x/2)))dx  ∫((d(tan(x/2)))/(tan(x/2)(1+tan(x/2))))  ∫((d(tan(x/2)))/(tan(x/2)))−∫((d(tan(x/2)))/(1+tan(x/2)))  ∣ln(((tan(x/2))/(1+tan(x/2))))∣_(π/2) ^π   ln1−ln((1/(1+1)))  =ln2

$$\int\frac{{dx}}{\mathrm{2}{sin}\frac{{x}}{\mathrm{2}}{cos}\frac{{x}}{\mathrm{2}}+\mathrm{2}{sin}^{\mathrm{2}} \frac{{x}}{\mathrm{2}}} \\ $$$$\int\frac{{sec}^{\mathrm{2}} \frac{{x}}{\mathrm{2}}{dx}}{\mathrm{2}{tan}\frac{{x}}{\mathrm{2}}+\mathrm{2}{tan}^{\mathrm{2}} \frac{{x}}{\mathrm{2}}}{dx} \\ $$$$\int\frac{{d}\left({tan}\frac{{x}}{\mathrm{2}}\right)}{{tan}\frac{{x}}{\mathrm{2}}\left(\mathrm{1}+{tan}\frac{{x}}{\mathrm{2}}\right)} \\ $$$$\int\frac{{d}\left({tan}\frac{{x}}{\mathrm{2}}\right)}{{tan}\frac{{x}}{\mathrm{2}}}−\int\frac{{d}\left({tan}\frac{{x}}{\mathrm{2}}\right)}{\mathrm{1}+{tan}\frac{{x}}{\mathrm{2}}} \\ $$$$\mid{ln}\left(\frac{{tan}\frac{{x}}{\mathrm{2}}}{\mathrm{1}+{tan}\frac{{x}}{\mathrm{2}}}\right)\mid_{\frac{\pi}{\mathrm{2}}} ^{\pi} \\ $$$${ln}\mathrm{1}−{ln}\left(\frac{\mathrm{1}}{\mathrm{1}+\mathrm{1}}\right) \\ $$$$={ln}\mathrm{2} \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com