Question and Answers Forum

All Questions      Topic List

Gravitation Questions

Previous in All Question      Next in All Question      

Previous in Gravitation      Next in Gravitation      

Question Number 64452 by Tanmay chaudhury last updated on 18/Jul/19

Commented by Tanmay chaudhury last updated on 18/Jul/19

thank you...

$${thank}\:{you}... \\ $$

Commented by Tanmay chaudhury last updated on 18/Jul/19

unsolved problem...

$${unsolved}\:{problem}... \\ $$

Commented by ajfour last updated on 18/Jul/19

i will solve it by evening, Tanmay Sir..

$${i}\:{will}\:{solve}\:{it}\:{by}\:{evening},\:{Tanmay}\:{Sir}.. \\ $$

Commented by mr W last updated on 18/Jul/19

could it be 12?

$${could}\:{it}\:{be}\:\mathrm{12}? \\ $$

Commented by Tanmay chaudhury last updated on 18/Jul/19

sir someone shared me the problem  the answer of ((b−a)/3)=5 as per sender comment

$${sir}\:{someone}\:{shared}\:{me}\:{the}\:{problem} \\ $$$${the}\:{answer}\:{of}\:\frac{{b}−{a}}{\mathrm{3}}=\mathrm{5}\:{as}\:{per}\:{sender}\:{comment} \\ $$

Answered by ajfour last updated on 19/Jul/19

Commented by ajfour last updated on 19/Jul/19

potential within a solid ball of mass M  radius R.  V(r)=((GMr^3 )/(R^3 (r)))+∫_r ^( R)  ((Gρ(4πz^2 )dz)/z)      = ((GMr^2 )/R^3 )+((GM(4π))/(((4/3)πR^3 )))(((R^2 −r^2 )/2))          V(r)= ((GM)/R^3 )(((3R^2 −r^2 )/2))  __________________________  gravitational potential energy  b/w full ball of radius R ,  density ρ and the small ball of  radius R/2, density −ρ.       −∫dU_1 =∫_0 ^( R) ρAVdr    =∫_0 ^( R) ρ[2π(r^2 −(r^3 /R))((GM)/R^3 )(((3R^2 −r^2 )/2))dr    =((πρGM)/R^3 )∫_0 ^( R) {3R^2 r^2 −r^4 −3Rr^3 +(r^5 /R)}dr   = ((3GM^2 )/(4R))(1−(1/5)−(3/4)+(1/6))      U_1 =−((3GM^2 )/(4R))(((13)/(60))) =−((13GM^2 )/(80R))  And gravitational potential energy  of small sphere with small sphere  be U_2 .  U_2 =∫_0 ^( R/2) [V_(R/2) (r)](4πρr^2 )dr   U_2 = ∫((G((M/8)))/(((R/2))^3 ))[((3((R/2))^2 −r^2 )/2)](4πρr^2 )dr     =((4πGM)/(2R^3 ))(((3M)/(4πR^3 )))∫_0 ^( R/2) (((3R^2 r^2 )/4)−r^4 )dr            =((3GM^2 )/(2R))((1/(32))−(1/(5×32)))          U_2 =((3GM^2 )/(80R))  W_(reauired) = −(U_1 +U_2 )             = −((GM^2 )/R)(−((13)/(80))+(3/(80)))              =((GM^2 )/(8R))

$${potential}\:{within}\:{a}\:{solid}\:{ball}\:{of}\:{mass}\:{M} \\ $$$${radius}\:{R}. \\ $$$${V}\left({r}\right)=\frac{{GMr}^{\mathrm{3}} }{{R}^{\mathrm{3}} \left({r}\right)}+\int_{{r}} ^{\:{R}} \:\frac{{G}\rho\left(\mathrm{4}\pi{z}^{\mathrm{2}} \right){dz}}{{z}} \\ $$$$\:\:\:\:=\:\frac{{GMr}^{\mathrm{2}} }{{R}^{\mathrm{3}} }+\frac{{GM}\left(\mathrm{4}\pi\right)}{\left(\frac{\mathrm{4}}{\mathrm{3}}\pi{R}^{\mathrm{3}} \right)}\left(\frac{{R}^{\mathrm{2}} −{r}^{\mathrm{2}} }{\mathrm{2}}\right) \\ $$$$\:\:\:\:\:\:\:\:{V}\left({r}\right)=\:\frac{{GM}}{{R}^{\mathrm{3}} }\left(\frac{\mathrm{3}{R}^{\mathrm{2}} −{r}^{\mathrm{2}} }{\mathrm{2}}\right) \\ $$$$\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_ \\ $$$${gravitational}\:{potential}\:{energy} \\ $$$${b}/{w}\:{full}\:{ball}\:{of}\:{radius}\:{R}\:, \\ $$$${density}\:\rho\:{and}\:{the}\:{small}\:{ball}\:{of} \\ $$$${radius}\:{R}/\mathrm{2},\:{density}\:−\rho. \\ $$$$\:\:\:\:\:−\int{dU}_{\mathrm{1}} =\int_{\mathrm{0}} ^{\:{R}} \rho{AVdr} \\ $$$$\:\:=\int_{\mathrm{0}} ^{\:{R}} \rho\left[\mathrm{2}\pi\left({r}^{\mathrm{2}} −\frac{{r}^{\mathrm{3}} }{{R}}\right)\frac{{GM}}{{R}^{\mathrm{3}} }\left(\frac{\mathrm{3}{R}^{\mathrm{2}} −{r}^{\mathrm{2}} }{\mathrm{2}}\right){dr}\right. \\ $$$$\:\:=\frac{\pi\rho{GM}}{{R}^{\mathrm{3}} }\int_{\mathrm{0}} ^{\:{R}} \left\{\mathrm{3}{R}^{\mathrm{2}} {r}^{\mathrm{2}} −{r}^{\mathrm{4}} −\mathrm{3}{Rr}^{\mathrm{3}} +\frac{{r}^{\mathrm{5}} }{{R}}\right\}{dr} \\ $$$$\:=\:\frac{\mathrm{3}{GM}^{\mathrm{2}} }{\mathrm{4}{R}}\left(\mathrm{1}−\frac{\mathrm{1}}{\mathrm{5}}−\frac{\mathrm{3}}{\mathrm{4}}+\frac{\mathrm{1}}{\mathrm{6}}\right) \\ $$$$\:\:\:\:{U}_{\mathrm{1}} =−\frac{\mathrm{3}{GM}^{\mathrm{2}} }{\mathrm{4}{R}}\left(\frac{\mathrm{13}}{\mathrm{60}}\right)\:=−\frac{\mathrm{13}{GM}^{\mathrm{2}} }{\mathrm{80}{R}} \\ $$$${And}\:{gravitational}\:{potential}\:{energy} \\ $$$${of}\:{small}\:{sphere}\:{with}\:{small}\:{sphere} \\ $$$${be}\:{U}_{\mathrm{2}} . \\ $$$${U}_{\mathrm{2}} =\int_{\mathrm{0}} ^{\:{R}/\mathrm{2}} \left[{V}_{{R}/\mathrm{2}} \left({r}\right)\right]\left(\mathrm{4}\pi\rho{r}^{\mathrm{2}} \right){dr} \\ $$$$\:{U}_{\mathrm{2}} =\:\int\frac{{G}\left(\frac{{M}}{\mathrm{8}}\right)}{\left(\frac{{R}}{\mathrm{2}}\right)^{\mathrm{3}} }\left[\frac{\mathrm{3}\left(\frac{{R}}{\mathrm{2}}\right)^{\mathrm{2}} −{r}^{\mathrm{2}} }{\mathrm{2}}\right]\left(\mathrm{4}\pi\rho{r}^{\mathrm{2}} \right){dr} \\ $$$$\:\:\:=\frac{\mathrm{4}\pi{GM}}{\mathrm{2}{R}^{\mathrm{3}} }\left(\frac{\mathrm{3}{M}}{\mathrm{4}\pi{R}^{\mathrm{3}} }\right)\int_{\mathrm{0}} ^{\:{R}/\mathrm{2}} \left(\frac{\mathrm{3}{R}^{\mathrm{2}} {r}^{\mathrm{2}} }{\mathrm{4}}−{r}^{\mathrm{4}} \right){dr} \\ $$$$\:\:\:\:\:\:\:\:\:\:=\frac{\mathrm{3}{GM}^{\mathrm{2}} }{\mathrm{2}{R}}\left(\frac{\mathrm{1}}{\mathrm{32}}−\frac{\mathrm{1}}{\mathrm{5}×\mathrm{32}}\right)\: \\ $$$$\:\:\:\:\:\:\:{U}_{\mathrm{2}} =\frac{\mathrm{3}{GM}^{\mathrm{2}} }{\mathrm{80}{R}} \\ $$$${W}_{{reauired}} =\:−\left({U}_{\mathrm{1}} +{U}_{\mathrm{2}} \right) \\ $$$$\:\:\:\:\:\:\:\:\:\:\:=\:−\frac{{GM}^{\mathrm{2}} }{{R}}\left(−\frac{\mathrm{13}}{\mathrm{80}}+\frac{\mathrm{3}}{\mathrm{80}}\right)\: \\ $$$$\:\:\:\:\:\:\:\:\:\:\:=\frac{{GM}^{\mathrm{2}} }{\mathrm{8}{R}} \\ $$

Commented by Tanmay chaudhury last updated on 19/Jul/19

thank you sir ..

$${thank}\:{you}\:{sir}\:.. \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com