Question and Answers Forum

All Questions      Topic List

Geometry Questions

Previous in All Question      Next in All Question      

Previous in Geometry      Next in Geometry      

Question Number 64516 by Tawa1 last updated on 18/Jul/19

Commented by Tawa1 last updated on 18/Jul/19

Is it possible to find area of each colour ?  please help.

$$\mathrm{Is}\:\mathrm{it}\:\mathrm{possible}\:\mathrm{to}\:\mathrm{find}\:\mathrm{area}\:\mathrm{of}\:\mathrm{each}\:\mathrm{colour}\:? \\ $$$$\mathrm{please}\:\mathrm{help}. \\ $$

Commented by Tawa1 last updated on 18/Jul/19

The length of the sqjare is    s

$$\mathrm{The}\:\mathrm{length}\:\mathrm{of}\:\mathrm{the}\:\mathrm{sqjare}\:\mathrm{is}\:\:\:\:\mathrm{s} \\ $$

Commented by Tony Lin last updated on 19/Jul/19

blue area(1/4)  =square−2sectors(30°)−equilateral triangle  =s^2 −(1/2)×(π/3)s^2 −((√3)/4)s^2   =s^2 −(π/6)s^2 −((√3)/4)s^2   blue area=4s^2 −((2π)/3)s^2 −(√3)s^2   pink area(1/4)  =square−sector(90°)−2blue area(1/4)  =s^2 −(1/2)s^2 ×(π/2)−2(s^2 −(π/6)s^2 −((√3)/4)s^2 )  =−s^2 +(π/(12))s^2 +((√3)/2)s^2   pink area=−4s^2 +(π/3)s^2 +2(√3)s^2   yellow area  =square−blue area−pink area  =s^2 −(4s^2 −((2π)/3)s^2 −(√3)s^2 )−(−4s^2 +(π/3)s^2 +2(√3)s^2 )  =s^2 +(π/3)s^2 −(√3)s^2

$${blue}\:{area}\left(\mathrm{1}/\mathrm{4}\right) \\ $$$$={square}−\mathrm{2}{sectors}\left(\mathrm{30}°\right)−{equilateral}\:{triangle} \\ $$$$={s}^{\mathrm{2}} −\frac{\mathrm{1}}{\mathrm{2}}×\frac{\pi}{\mathrm{3}}{s}^{\mathrm{2}} −\frac{\sqrt{\mathrm{3}}}{\mathrm{4}}{s}^{\mathrm{2}} \\ $$$$={s}^{\mathrm{2}} −\frac{\pi}{\mathrm{6}}{s}^{\mathrm{2}} −\frac{\sqrt{\mathrm{3}}}{\mathrm{4}}{s}^{\mathrm{2}} \\ $$$${blue}\:{area}=\mathrm{4}{s}^{\mathrm{2}} −\frac{\mathrm{2}\pi}{\mathrm{3}}{s}^{\mathrm{2}} −\sqrt{\mathrm{3}}{s}^{\mathrm{2}} \\ $$$${pink}\:{area}\left(\mathrm{1}/\mathrm{4}\right) \\ $$$$={square}−{sector}\left(\mathrm{90}°\right)−\mathrm{2}{blue}\:{area}\left(\mathrm{1}/\mathrm{4}\right) \\ $$$$={s}^{\mathrm{2}} −\frac{\mathrm{1}}{\mathrm{2}}{s}^{\mathrm{2}} ×\frac{\pi}{\mathrm{2}}−\mathrm{2}\left({s}^{\mathrm{2}} −\frac{\pi}{\mathrm{6}}{s}^{\mathrm{2}} −\frac{\sqrt{\mathrm{3}}}{\mathrm{4}}{s}^{\mathrm{2}} \right) \\ $$$$=−{s}^{\mathrm{2}} +\frac{\pi}{\mathrm{12}}{s}^{\mathrm{2}} +\frac{\sqrt{\mathrm{3}}}{\mathrm{2}}{s}^{\mathrm{2}} \\ $$$${pink}\:{area}=−\mathrm{4}{s}^{\mathrm{2}} +\frac{\pi}{\mathrm{3}}{s}^{\mathrm{2}} +\mathrm{2}\sqrt{\mathrm{3}}{s}^{\mathrm{2}} \\ $$$${yellow}\:{area} \\ $$$$={square}−{blue}\:{area}−{pink}\:{area} \\ $$$$={s}^{\mathrm{2}} −\left(\mathrm{4}{s}^{\mathrm{2}} −\frac{\mathrm{2}\pi}{\mathrm{3}}{s}^{\mathrm{2}} −\sqrt{\mathrm{3}}{s}^{\mathrm{2}} \right)−\left(−\mathrm{4}{s}^{\mathrm{2}} +\frac{\pi}{\mathrm{3}}{s}^{\mathrm{2}} +\mathrm{2}\sqrt{\mathrm{3}}{s}^{\mathrm{2}} \right) \\ $$$$={s}^{\mathrm{2}} +\frac{\pi}{\mathrm{3}}{s}^{\mathrm{2}} −\sqrt{\mathrm{3}}{s}^{\mathrm{2}} \\ $$

Commented by Tawa1 last updated on 19/Jul/19

God bless you sir

$$\mathrm{God}\:\mathrm{bless}\:\mathrm{you}\:\mathrm{sir} \\ $$

Commented by Tawa1 last updated on 19/Jul/19

Am still studying the solution sir. I will let you know when i finish  studying it sir

$$\mathrm{Am}\:\mathrm{still}\:\mathrm{studying}\:\mathrm{the}\:\mathrm{solution}\:\mathrm{sir}.\:\mathrm{I}\:\mathrm{will}\:\mathrm{let}\:\mathrm{you}\:\mathrm{know}\:\mathrm{when}\:\mathrm{i}\:\mathrm{finish} \\ $$$$\mathrm{studying}\:\mathrm{it}\:\mathrm{sir} \\ $$

Answered by MJS last updated on 18/Jul/19

let s=2t  center of the square = ((0),(0) )  corners A= (((−t)),((−t)) )  B= ((t),((−t)) )  C= ((t),(t) )  D= (((−g)),(t) )  corners of the yellow area  circle_(A, 2t) ∩circle_(B, 2t)   c_(A, 2t) : (x+t)^2 +(y+t)^2 =4t^2   (i)  c_(B, 2t) : (x−t)^2 +(y+t)^2 =4t^2   (ii)  (i)−(ii)  (x+t)^2 −(x−t)^2 =0  4tx=0 ⇒ x=0 [because t≠0]  (i) with x=0  t^2 +(y+t)^2 =4t^2   ⇒ y=(−1±(√3))t [but we need the upper       intersection]  ⇒ y=(−1+(√3))t  ⇒ corners of the yellow area  E= ((0),(((1−(√3))t)) )  F= ((((−1+(√3))t)),(0) )  G= ((0),(((−1+(√3))t)) )  H= ((((1−(√3))t)),(0) )  the yellow area  4∫_((1−(√3))t) ^0 c_(B, 2t) dx  c_(B, 2t) : y=−t+(√((t+x)(3t−x)))  4∫_((1−(√3))t) ^0 (−t+(√((t+x)(3t−x))))dx=4(1−(√3)+(π/3))t^2   the blue area  8∫_(−t) ^0 (t−c_(A, 2t) )dx  c_(A, 2t) : y=−t+(√((t−x)(3t+x)))  8∫_(−t) ^0 (2t−(√((t−x)(3t+x))))dx=4(4−(√3)−((2π)/3))t^2   the pink area = square−(yellow+blue)  4t^2 −(4(1−(√3)+(π/3))t^2 +4(4−(√3)−((2π)/3))t^2 )=  =4(−4+2(√3)+(π/3))t^2   with t=(s/2) we get  yellow =(1−(√3)+(π/3))s^2 ≈.315147s^2   blue =(4−(√3)−((2π)/3))s^2 ≈.173554s^2   pink =(−4+2(√3)+(π/3))s^2 ≈.511299s^2

$$\mathrm{let}\:{s}=\mathrm{2}{t} \\ $$$$\mathrm{center}\:\mathrm{of}\:\mathrm{the}\:\mathrm{square}\:=\begin{pmatrix}{\mathrm{0}}\\{\mathrm{0}}\end{pmatrix} \\ $$$$\mathrm{corners}\:{A}=\begin{pmatrix}{−{t}}\\{−{t}}\end{pmatrix}\:\:{B}=\begin{pmatrix}{{t}}\\{−{t}}\end{pmatrix}\:\:{C}=\begin{pmatrix}{{t}}\\{{t}}\end{pmatrix}\:\:{D}=\begin{pmatrix}{−{g}}\\{{t}}\end{pmatrix} \\ $$$$\mathrm{corners}\:\mathrm{of}\:\mathrm{the}\:\mathrm{yellow}\:\mathrm{area} \\ $$$$\mathrm{circle}_{{A},\:\mathrm{2}{t}} \cap\mathrm{circle}_{{B},\:\mathrm{2}{t}} \\ $$$$\mathrm{c}_{{A},\:\mathrm{2}{t}} :\:\left({x}+{t}\right)^{\mathrm{2}} +\left({y}+{t}\right)^{\mathrm{2}} =\mathrm{4}{t}^{\mathrm{2}} \:\:\left(\mathrm{i}\right) \\ $$$$\mathrm{c}_{{B},\:\mathrm{2}{t}} :\:\left({x}−{t}\right)^{\mathrm{2}} +\left({y}+{t}\right)^{\mathrm{2}} =\mathrm{4}{t}^{\mathrm{2}} \:\:\left(\mathrm{ii}\right) \\ $$$$\left(\mathrm{i}\right)−\left(\mathrm{ii}\right) \\ $$$$\left({x}+{t}\right)^{\mathrm{2}} −\left({x}−{t}\right)^{\mathrm{2}} =\mathrm{0} \\ $$$$\mathrm{4}{tx}=\mathrm{0}\:\Rightarrow\:{x}=\mathrm{0}\:\left[\mathrm{because}\:{t}\neq\mathrm{0}\right] \\ $$$$\left(\mathrm{i}\right)\:\mathrm{with}\:{x}=\mathrm{0} \\ $$$${t}^{\mathrm{2}} +\left({y}+{t}\right)^{\mathrm{2}} =\mathrm{4}{t}^{\mathrm{2}} \\ $$$$\Rightarrow\:{y}=\left(−\mathrm{1}\pm\sqrt{\mathrm{3}}\right){t}\:\left[\mathrm{but}\:\mathrm{we}\:\mathrm{need}\:\mathrm{the}\:\mathrm{upper}\right. \\ $$$$\left.\:\:\:\:\:\mathrm{intersection}\right] \\ $$$$\Rightarrow\:{y}=\left(−\mathrm{1}+\sqrt{\mathrm{3}}\right){t} \\ $$$$\Rightarrow\:\mathrm{corners}\:\mathrm{of}\:\mathrm{the}\:\mathrm{yellow}\:\mathrm{area} \\ $$$${E}=\begin{pmatrix}{\mathrm{0}}\\{\left(\mathrm{1}−\sqrt{\mathrm{3}}\right){t}}\end{pmatrix}\:\:{F}=\begin{pmatrix}{\left(−\mathrm{1}+\sqrt{\mathrm{3}}\right){t}}\\{\mathrm{0}}\end{pmatrix}\:\:{G}=\begin{pmatrix}{\mathrm{0}}\\{\left(−\mathrm{1}+\sqrt{\mathrm{3}}\right){t}}\end{pmatrix}\:\:{H}=\begin{pmatrix}{\left(\mathrm{1}−\sqrt{\mathrm{3}}\right){t}}\\{\mathrm{0}}\end{pmatrix} \\ $$$$\mathrm{the}\:\mathrm{yellow}\:\mathrm{area} \\ $$$$\mathrm{4}\underset{\left(\mathrm{1}−\sqrt{\mathrm{3}}\right){t}} {\overset{\mathrm{0}} {\int}}\mathrm{c}_{{B},\:\mathrm{2}{t}} {dx} \\ $$$$\mathrm{c}_{{B},\:\mathrm{2}{t}} :\:{y}=−{t}+\sqrt{\left({t}+{x}\right)\left(\mathrm{3}{t}−{x}\right)} \\ $$$$\mathrm{4}\underset{\left(\mathrm{1}−\sqrt{\mathrm{3}}\right){t}} {\overset{\mathrm{0}} {\int}}\left(−{t}+\sqrt{\left({t}+{x}\right)\left(\mathrm{3}{t}−{x}\right)}\right){dx}=\mathrm{4}\left(\mathrm{1}−\sqrt{\mathrm{3}}+\frac{\pi}{\mathrm{3}}\right){t}^{\mathrm{2}} \\ $$$$\mathrm{the}\:\mathrm{blue}\:\mathrm{area} \\ $$$$\mathrm{8}\underset{−{t}} {\overset{\mathrm{0}} {\int}}\left({t}−\mathrm{c}_{{A},\:\mathrm{2}{t}} \right){dx} \\ $$$$\mathrm{c}_{{A},\:\mathrm{2}{t}} :\:{y}=−{t}+\sqrt{\left({t}−{x}\right)\left(\mathrm{3}{t}+{x}\right)} \\ $$$$\mathrm{8}\underset{−{t}} {\overset{\mathrm{0}} {\int}}\left(\mathrm{2}{t}−\sqrt{\left({t}−{x}\right)\left(\mathrm{3}{t}+{x}\right)}\right){dx}=\mathrm{4}\left(\mathrm{4}−\sqrt{\mathrm{3}}−\frac{\mathrm{2}\pi}{\mathrm{3}}\right){t}^{\mathrm{2}} \\ $$$$\mathrm{the}\:\mathrm{pink}\:\mathrm{area}\:=\:\mathrm{square}−\left(\mathrm{yellow}+\mathrm{blue}\right) \\ $$$$\mathrm{4t}^{\mathrm{2}} −\left(\mathrm{4}\left(\mathrm{1}−\sqrt{\mathrm{3}}+\frac{\pi}{\mathrm{3}}\right){t}^{\mathrm{2}} +\mathrm{4}\left(\mathrm{4}−\sqrt{\mathrm{3}}−\frac{\mathrm{2}\pi}{\mathrm{3}}\right){t}^{\mathrm{2}} \right)= \\ $$$$=\mathrm{4}\left(−\mathrm{4}+\mathrm{2}\sqrt{\mathrm{3}}+\frac{\pi}{\mathrm{3}}\right){t}^{\mathrm{2}} \\ $$$$\mathrm{with}\:{t}=\frac{{s}}{\mathrm{2}}\:\mathrm{we}\:\mathrm{get} \\ $$$$\mathrm{yellow}\:=\left(\mathrm{1}−\sqrt{\mathrm{3}}+\frac{\pi}{\mathrm{3}}\right){s}^{\mathrm{2}} \approx.\mathrm{315147}{s}^{\mathrm{2}} \\ $$$$\mathrm{blue}\:=\left(\mathrm{4}−\sqrt{\mathrm{3}}−\frac{\mathrm{2}\pi}{\mathrm{3}}\right){s}^{\mathrm{2}} \approx.\mathrm{173554}{s}^{\mathrm{2}} \\ $$$$\mathrm{pink}\:=\left(−\mathrm{4}+\mathrm{2}\sqrt{\mathrm{3}}+\frac{\pi}{\mathrm{3}}\right){s}^{\mathrm{2}} \approx.\mathrm{511299}{s}^{\mathrm{2}} \\ $$

Commented by Tawa1 last updated on 19/Jul/19

God bless you sir, i will study it and get back to you sir ifi  i get issue in the workings.

$$\mathrm{God}\:\mathrm{bless}\:\mathrm{you}\:\mathrm{sir},\:\mathrm{i}\:\mathrm{will}\:\mathrm{study}\:\mathrm{it}\:\mathrm{and}\:\mathrm{get}\:\mathrm{back}\:\mathrm{to}\:\mathrm{you}\:\mathrm{sir}\:\mathrm{ifi} \\ $$$$\mathrm{i}\:\mathrm{get}\:\mathrm{issue}\:\mathrm{in}\:\mathrm{the}\:\mathrm{workings}. \\ $$

Commented by Tawa1 last updated on 19/Jul/19

why is   s = 2t sir ?  and how we get corners  and what is corner A, 2t.     Sorry sir if my questions is too much.  Thanks sir.

$$\mathrm{why}\:\mathrm{is}\:\:\:\mathrm{s}\:=\:\mathrm{2t}\:\mathrm{sir}\:?\:\:\mathrm{and}\:\mathrm{how}\:\mathrm{we}\:\mathrm{get}\:\mathrm{corners} \\ $$$$\mathrm{and}\:\mathrm{what}\:\mathrm{is}\:\mathrm{corner}\:\mathrm{A},\:\mathrm{2t}.\:\:\:\:\:\mathrm{Sorry}\:\mathrm{sir}\:\mathrm{if}\:\mathrm{my}\:\mathrm{questions}\:\mathrm{is}\:\mathrm{too}\:\mathrm{much}. \\ $$$$\mathrm{Thanks}\:\mathrm{sir}. \\ $$

Commented by MJS last updated on 19/Jul/19

corners=vertices  sorry my native language is German so it′s  just a translation error  c_(A, 2t)  means circle with center A and radius 2t  I put s=2t to avoid fractions in the coordinates  of the vertices like A= (((−(s/2))),((−(s/2))) )  and the  equations of the circles like (x+(1/2))^2 +(y+(1/2))^2 =s^2

$$\mathrm{corners}=\mathrm{vertices} \\ $$$$\mathrm{sorry}\:\mathrm{my}\:\mathrm{native}\:\mathrm{language}\:\mathrm{is}\:\mathrm{German}\:\mathrm{so}\:\mathrm{it}'\mathrm{s} \\ $$$$\mathrm{just}\:\mathrm{a}\:\mathrm{translation}\:\mathrm{error} \\ $$$$\mathrm{c}_{{A},\:\mathrm{2}{t}} \:\mathrm{means}\:\mathrm{circle}\:\mathrm{with}\:\mathrm{center}\:{A}\:\mathrm{and}\:\mathrm{radius}\:\mathrm{2}{t} \\ $$$$\mathrm{I}\:\mathrm{put}\:{s}=\mathrm{2}{t}\:\mathrm{to}\:\mathrm{avoid}\:\mathrm{fractions}\:\mathrm{in}\:\mathrm{the}\:\mathrm{coordinates} \\ $$$$\mathrm{of}\:\mathrm{the}\:\mathrm{vertices}\:\mathrm{like}\:{A}=\begin{pmatrix}{−\frac{{s}}{\mathrm{2}}}\\{−\frac{{s}}{\mathrm{2}}}\end{pmatrix}\:\:\mathrm{and}\:\mathrm{the} \\ $$$$\mathrm{equations}\:\mathrm{of}\:\mathrm{the}\:\mathrm{circles}\:\mathrm{like}\:\left({x}+\frac{\mathrm{1}}{\mathrm{2}}\right)^{\mathrm{2}} +\left({y}+\frac{\mathrm{1}}{\mathrm{2}}\right)^{\mathrm{2}} ={s}^{\mathrm{2}} \\ $$

Commented by Tawa1 last updated on 19/Jul/19

God bless you more sir.  Am still studying the solution sir.  I will let you know when i finished  it.  I don′t want to ask questions now untill i understand everything  on my own.  I will tell you when am through.

$$\mathrm{God}\:\mathrm{bless}\:\mathrm{you}\:\mathrm{more}\:\mathrm{sir}. \\ $$$$\mathrm{Am}\:\mathrm{still}\:\mathrm{studying}\:\mathrm{the}\:\mathrm{solution}\:\mathrm{sir}.\:\:\mathrm{I}\:\mathrm{will}\:\mathrm{let}\:\mathrm{you}\:\mathrm{know}\:\mathrm{when}\:\mathrm{i}\:\mathrm{finished} \\ $$$$\mathrm{it}.\:\:\mathrm{I}\:\mathrm{don}'\mathrm{t}\:\mathrm{want}\:\mathrm{to}\:\mathrm{ask}\:\mathrm{questions}\:\mathrm{now}\:\mathrm{untill}\:\mathrm{i}\:\mathrm{understand}\:\mathrm{everything} \\ $$$$\mathrm{on}\:\mathrm{my}\:\mathrm{own}.\:\:\mathrm{I}\:\mathrm{will}\:\mathrm{tell}\:\mathrm{you}\:\mathrm{when}\:\mathrm{am}\:\mathrm{through}. \\ $$

Answered by Tony Lin last updated on 23/Jul/19

Terms of Service

Privacy Policy

Contact: info@tinkutara.com