Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 64525 by mathmax by abdo last updated on 19/Jul/19

study the convergence of Σ U_n    with  U_n =∫_0 ^∞    ((cos(nx))/(x^2  +n^2 ))dx   (n≥1)

$${study}\:{the}\:{convergence}\:{of}\:\Sigma\:{U}_{{n}} \:\:\:{with} \\ $$$${U}_{{n}} =\int_{\mathrm{0}} ^{\infty} \:\:\:\frac{{cos}\left({nx}\right)}{{x}^{\mathrm{2}} \:+{n}^{\mathrm{2}} }{dx}\:\:\:\left({n}\geqslant\mathrm{1}\right) \\ $$

Commented by mathmax by abdo last updated on 19/Jul/19

we have  2U_n =∫_(−∞) ^(+∞)   ((cos(nx))/(x^2 +n^2 )) =_(x=nt)    ∫_(−∞) ^(+∞)   ((cos(n^2 t))/(n^2 (1+t^2 )))ndt  =(1/n) ∫_(−∞) ^(+∞)   ((cos(n^2 t))/(t^2  +1))dt =(1/n) Re( ∫_(−∞) ^(+∞)  (e^(in^2 t) /(t^2  +1))dt) let ϕ(z)=(e^(in^2 z) /(z^2  +1))  we have ϕ(z) =(e^(inz^2 ) /((z−i)(z+i)))  residus theorem give  ∫_(−∞) ^(+∞)  ϕ(z)dz =2iπ Res(ϕ,i)  Res(ϕ,i)=lim_(z→i) (z−i)ϕ(z) =lim_(z→i)  (e^(in^2 z) /(z+i)) =(e^(−n^2 ) /(2i)) ⇒  ∫_(−∞) ^(+∞)  ϕ(z)dz =2iπ (e^(−n^2 ) /(2i)) =π e^(−n^2  )  ⇒2U_n =(π/n) e^(−n^2 )  ⇒  U_n =(π/(2n)) e^(−n^2 )      (n≥1)  its claear that Σ_(n=1) ^∞  U_n ≤(π/2)Σ_(n=1) ^∞  e^(−n^2 )   ≤(π/2)Σ_(n=1) ^∞  e^(−n)     and this serie is convergent ⇒ΣU_n  converges

$${we}\:{have}\:\:\mathrm{2}{U}_{{n}} =\int_{−\infty} ^{+\infty} \:\:\frac{{cos}\left({nx}\right)}{{x}^{\mathrm{2}} +{n}^{\mathrm{2}} }\:=_{{x}={nt}} \:\:\:\int_{−\infty} ^{+\infty} \:\:\frac{{cos}\left({n}^{\mathrm{2}} {t}\right)}{{n}^{\mathrm{2}} \left(\mathrm{1}+{t}^{\mathrm{2}} \right)}{ndt} \\ $$$$=\frac{\mathrm{1}}{{n}}\:\int_{−\infty} ^{+\infty} \:\:\frac{{cos}\left({n}^{\mathrm{2}} {t}\right)}{{t}^{\mathrm{2}} \:+\mathrm{1}}{dt}\:=\frac{\mathrm{1}}{{n}}\:{Re}\left(\:\int_{−\infty} ^{+\infty} \:\frac{{e}^{{in}^{\mathrm{2}} {t}} }{{t}^{\mathrm{2}} \:+\mathrm{1}}{dt}\right)\:{let}\:\varphi\left({z}\right)=\frac{{e}^{{in}^{\mathrm{2}} {z}} }{{z}^{\mathrm{2}} \:+\mathrm{1}} \\ $$$${we}\:{have}\:\varphi\left({z}\right)\:=\frac{{e}^{{inz}^{\mathrm{2}} } }{\left({z}−{i}\right)\left({z}+{i}\right)}\:\:{residus}\:{theorem}\:{give} \\ $$$$\int_{−\infty} ^{+\infty} \:\varphi\left({z}\right){dz}\:=\mathrm{2}{i}\pi\:{Res}\left(\varphi,{i}\right) \\ $$$${Res}\left(\varphi,{i}\right)={lim}_{{z}\rightarrow{i}} \left({z}−{i}\right)\varphi\left({z}\right)\:={lim}_{{z}\rightarrow{i}} \:\frac{{e}^{{in}^{\mathrm{2}} {z}} }{{z}+{i}}\:=\frac{{e}^{−{n}^{\mathrm{2}} } }{\mathrm{2}{i}}\:\Rightarrow \\ $$$$\int_{−\infty} ^{+\infty} \:\varphi\left({z}\right){dz}\:=\mathrm{2}{i}\pi\:\frac{{e}^{−{n}^{\mathrm{2}} } }{\mathrm{2}{i}}\:=\pi\:{e}^{−{n}^{\mathrm{2}} \:} \:\Rightarrow\mathrm{2}{U}_{{n}} =\frac{\pi}{{n}}\:{e}^{−{n}^{\mathrm{2}} } \:\Rightarrow \\ $$$${U}_{{n}} =\frac{\pi}{\mathrm{2}{n}}\:{e}^{−{n}^{\mathrm{2}} } \:\:\:\:\:\left({n}\geqslant\mathrm{1}\right)\:\:{its}\:{claear}\:{that}\:\sum_{{n}=\mathrm{1}} ^{\infty} \:{U}_{{n}} \leqslant\frac{\pi}{\mathrm{2}}\sum_{{n}=\mathrm{1}} ^{\infty} \:{e}^{−{n}^{\mathrm{2}} } \\ $$$$\leqslant\frac{\pi}{\mathrm{2}}\sum_{{n}=\mathrm{1}} ^{\infty} \:{e}^{−{n}} \:\:\:\:{and}\:{this}\:{serie}\:{is}\:{convergent}\:\Rightarrow\Sigma{U}_{{n}} \:{converges} \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com