Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 64528 by mathmax by abdo last updated on 19/Jul/19

find  ∫_0 ^1  x^(−x) dx   study first the convergence.

$${find}\:\:\int_{\mathrm{0}} ^{\mathrm{1}} \:{x}^{−{x}} {dx}\:\:\:{study}\:{first}\:{the}\:{convergence}. \\ $$

Commented by mathmax by abdo last updated on 19/Jul/19

we have  x^(−x)  =e^(−xln(x))  let  A =∫_0 ^1  x^(−x) dx ⇒A =∫_0 ^1  e^(−xlnx) dx  we have lim_(x→0^+ )    xln(x) =0 ⇒lim_(x→0^ )   e^(−xlnx)  =1  so  the function x→e^(−xlnx)  is integrable on [0,1]  we have A =∫_0 ^1 Σ_(n=0) ^∞  (((−xlnx)^n )/(n!))dx =Σ_(n=0) ^∞ (((−1)^n )/(n!)) ∫_0 ^1 x^n (lnx)^n  dx  =Σ_(n=0) ^∞  (((−1)^n )/(n!))w_n   w_n =∫_0 ^1  x^n (lnx)^n dx =_(lnx =−t)    ∫_(+∞) ^0  e^(−nt)  (−t)^n  (−e^(−t) )dt  = ∫_0 ^∞   (−1)^n  t^n  e^(−(n+1)t)  dt =_((n+1)t =u)    (−1)^n ∫_0 ^∞    (u^n /((n+1)^n )) e^(−u)  (du/((n+1)))  =(((−1)^n )/((n+1)^(n+1) )) ∫_0 ^∞   u^n  e^(−u)  du   we know that Γ(x) =∫_0 ^∞ t^(x−1)  e^(−t)  dt ⇒  ∫_0 ^∞   u^n  e^(−u)  du =Γ(n+1)=n! ⇒w_n =(((−1)^n n!)/((n+1)^(n+1) )) ⇒  A =Σ_(n=0) ^∞  (((−1)^n )/(n!)) (((−1)^n n!)/((n+1)^(n+1) )) =Σ_(n=0) ^∞   (1/((n+1)^(n+1) )) =Σ_(n=1) ^∞  (1/n^n )  =1 +(1/2^2 ) +(1/3^3 ) +(1/4^4 ) +....

$${we}\:{have}\:\:{x}^{−{x}} \:={e}^{−{xln}\left({x}\right)} \:{let}\:\:{A}\:=\int_{\mathrm{0}} ^{\mathrm{1}} \:{x}^{−{x}} {dx}\:\Rightarrow{A}\:=\int_{\mathrm{0}} ^{\mathrm{1}} \:{e}^{−{xlnx}} {dx} \\ $$$${we}\:{have}\:{lim}_{{x}\rightarrow\mathrm{0}^{+} } \:\:\:{xln}\left({x}\right)\:=\mathrm{0}\:\Rightarrow{lim}_{{x}\rightarrow\mathrm{0}^{} } \:\:{e}^{−{xlnx}} \:=\mathrm{1}\:\:{so} \\ $$$${the}\:{function}\:{x}\rightarrow{e}^{−{xlnx}} \:{is}\:{integrable}\:{on}\:\left[\mathrm{0},\mathrm{1}\right] \\ $$$${we}\:{have}\:{A}\:=\int_{\mathrm{0}} ^{\mathrm{1}} \sum_{{n}=\mathrm{0}} ^{\infty} \:\frac{\left(−{xlnx}\right)^{{n}} }{{n}!}{dx}\:=\sum_{{n}=\mathrm{0}} ^{\infty} \frac{\left(−\mathrm{1}\right)^{{n}} }{{n}!}\:\int_{\mathrm{0}} ^{\mathrm{1}} {x}^{{n}} \left({lnx}\right)^{{n}} \:{dx} \\ $$$$=\sum_{{n}=\mathrm{0}} ^{\infty} \:\frac{\left(−\mathrm{1}\right)^{{n}} }{{n}!}{w}_{{n}} \\ $$$${w}_{{n}} =\int_{\mathrm{0}} ^{\mathrm{1}} \:{x}^{{n}} \left({lnx}\right)^{{n}} {dx}\:=_{{lnx}\:=−{t}} \:\:\:\int_{+\infty} ^{\mathrm{0}} \:{e}^{−{nt}} \:\left(−{t}\right)^{{n}} \:\left(−{e}^{−{t}} \right){dt} \\ $$$$=\:\int_{\mathrm{0}} ^{\infty} \:\:\left(−\mathrm{1}\right)^{{n}} \:{t}^{{n}} \:{e}^{−\left({n}+\mathrm{1}\right){t}} \:{dt}\:=_{\left({n}+\mathrm{1}\right){t}\:={u}} \:\:\:\left(−\mathrm{1}\right)^{{n}} \int_{\mathrm{0}} ^{\infty} \:\:\:\frac{{u}^{{n}} }{\left({n}+\mathrm{1}\right)^{{n}} }\:{e}^{−{u}} \:\frac{{du}}{\left({n}+\mathrm{1}\right)} \\ $$$$=\frac{\left(−\mathrm{1}\right)^{{n}} }{\left({n}+\mathrm{1}\right)^{{n}+\mathrm{1}} }\:\int_{\mathrm{0}} ^{\infty} \:\:{u}^{{n}} \:{e}^{−{u}} \:{du}\:\:\:{we}\:{know}\:{that}\:\Gamma\left({x}\right)\:=\int_{\mathrm{0}} ^{\infty} {t}^{{x}−\mathrm{1}} \:{e}^{−{t}} \:{dt}\:\Rightarrow \\ $$$$\int_{\mathrm{0}} ^{\infty} \:\:{u}^{{n}} \:{e}^{−{u}} \:{du}\:=\Gamma\left({n}+\mathrm{1}\right)={n}!\:\Rightarrow{w}_{{n}} =\frac{\left(−\mathrm{1}\right)^{{n}} {n}!}{\left({n}+\mathrm{1}\right)^{{n}+\mathrm{1}} }\:\Rightarrow \\ $$$${A}\:=\sum_{{n}=\mathrm{0}} ^{\infty} \:\frac{\left(−\mathrm{1}\right)^{{n}} }{{n}!}\:\frac{\left(−\mathrm{1}\right)^{{n}} {n}!}{\left({n}+\mathrm{1}\right)^{{n}+\mathrm{1}} }\:=\sum_{{n}=\mathrm{0}} ^{\infty} \:\:\frac{\mathrm{1}}{\left({n}+\mathrm{1}\right)^{{n}+\mathrm{1}} }\:=\sum_{{n}=\mathrm{1}} ^{\infty} \:\frac{\mathrm{1}}{{n}^{{n}} } \\ $$$$=\mathrm{1}\:+\frac{\mathrm{1}}{\mathrm{2}^{\mathrm{2}} }\:+\frac{\mathrm{1}}{\mathrm{3}^{\mathrm{3}} }\:+\frac{\mathrm{1}}{\mathrm{4}^{\mathrm{4}} }\:+.... \\ $$$$ \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com