Question and Answers Forum

All Questions      Topic List

Relation and Functions Questions

Previous in All Question      Next in All Question      

Previous in Relation and Functions      Next in Relation and Functions      

Question Number 64651 by mathmax by abdo last updated on 20/Jul/19

calculate Σ_(k=1) ^n kC_n ^k  3^k   interms of n

$${calculate}\:\sum_{{k}=\mathrm{1}} ^{{n}} {kC}_{{n}} ^{{k}} \:\mathrm{3}^{{k}} \:\:{interms}\:{of}\:{n} \\ $$

Commented by mathmax by abdo last updated on 20/Jul/19

let p(x) =Σ_(k=0) ^n  C_n ^k  x^k       we have p(x)=(x+1)^n    and  p^′ (x) =Σ_(k=1) ^n  k C_n ^k  x^(k−1)  ⇒ xp^′ (x) =Σ_(k=1) ^n  k C_n ^k  x^k   x=3 ⇒3p^′ (3) =Σ_(k=1) ^n  k C_n ^k  3^k       but p^′ (x)=n(x+1)^(n−1)  ⇒  p^′ (3) =n4^(n−1)  ⇒Σ_(k=1) ^n  kC_n ^k  3^k  =3n 4^(n−1)  .

$${let}\:{p}\left({x}\right)\:=\sum_{{k}=\mathrm{0}} ^{{n}} \:{C}_{{n}} ^{{k}} \:{x}^{{k}} \:\:\:\:\:\:{we}\:{have}\:{p}\left({x}\right)=\left({x}+\mathrm{1}\right)^{{n}} \:\:\:{and} \\ $$$${p}^{'} \left({x}\right)\:=\sum_{{k}=\mathrm{1}} ^{{n}} \:{k}\:{C}_{{n}} ^{{k}} \:{x}^{{k}−\mathrm{1}} \:\Rightarrow\:{xp}^{'} \left({x}\right)\:=\sum_{{k}=\mathrm{1}} ^{{n}} \:{k}\:{C}_{{n}} ^{{k}} \:{x}^{{k}} \\ $$$${x}=\mathrm{3}\:\Rightarrow\mathrm{3}{p}^{'} \left(\mathrm{3}\right)\:=\sum_{{k}=\mathrm{1}} ^{{n}} \:{k}\:{C}_{{n}} ^{{k}} \:\mathrm{3}^{{k}} \:\:\:\:\:\:{but}\:{p}^{'} \left({x}\right)={n}\left({x}+\mathrm{1}\right)^{{n}−\mathrm{1}} \:\Rightarrow \\ $$$${p}^{'} \left(\mathrm{3}\right)\:={n}\mathrm{4}^{{n}−\mathrm{1}} \:\Rightarrow\sum_{{k}=\mathrm{1}} ^{{n}} \:{kC}_{{n}} ^{{k}} \:\mathrm{3}^{{k}} \:=\mathrm{3}{n}\:\mathrm{4}^{{n}−\mathrm{1}} \:. \\ $$

Answered by mr W last updated on 20/Jul/19

(1+x)^n =Σ_(k=0) ^n C_n ^k x^k   n(1+x)^(n−1) =Σ_(k=0) ^n kC_n ^k x^(k−1)   n(1+x)^(n−1) x=Σ_(k=0) ^n kC_n ^k x^k   with x=3:  n(1+3)^(n−1) 3=Σ_(k=0) ^n kC_n ^k 3^k =Σ_(k=1) ^n kC_n ^k 3^k   ⇒Σ_(k=1) ^n kC_n ^k 3^k =3n4^(n−1)

$$\left(\mathrm{1}+{x}\right)^{{n}} =\underset{{k}=\mathrm{0}} {\overset{{n}} {\sum}}{C}_{{n}} ^{{k}} {x}^{{k}} \\ $$$${n}\left(\mathrm{1}+{x}\right)^{{n}−\mathrm{1}} =\underset{{k}=\mathrm{0}} {\overset{{n}} {\sum}}{kC}_{{n}} ^{{k}} {x}^{{k}−\mathrm{1}} \\ $$$${n}\left(\mathrm{1}+{x}\right)^{{n}−\mathrm{1}} {x}=\underset{{k}=\mathrm{0}} {\overset{{n}} {\sum}}{kC}_{{n}} ^{{k}} {x}^{{k}} \\ $$$${with}\:{x}=\mathrm{3}: \\ $$$${n}\left(\mathrm{1}+\mathrm{3}\right)^{{n}−\mathrm{1}} \mathrm{3}=\underset{{k}=\mathrm{0}} {\overset{{n}} {\sum}}{kC}_{{n}} ^{{k}} \mathrm{3}^{{k}} =\underset{{k}=\mathrm{1}} {\overset{{n}} {\sum}}{kC}_{{n}} ^{{k}} \mathrm{3}^{{k}} \\ $$$$\Rightarrow\underset{{k}=\mathrm{1}} {\overset{{n}} {\sum}}{kC}_{{n}} ^{{k}} \mathrm{3}^{{k}} =\mathrm{3}{n}\mathrm{4}^{{n}−\mathrm{1}} \\ $$

Commented by mathmax by abdo last updated on 20/Jul/19

thank you sir mrw

$${thank}\:{you}\:{sir}\:{mrw} \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com